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Abstract. Autonomous aerial monitoring is an important task aimed
at gathering information from areas that may not be easily accessible by
humans. At the same time, this task often requires recognizing anomalies
from a significant distance and/or not previously encountered in the past.
In this paper, we propose a novel framework that leverages the advanced
capabilities provided by Large Language Models (LLMs) to actively col-
lect information and perform anomaly detection in novel scenes. To this
end, we propose an LLM-based model dialogue approach, in which two
deep learning models engage in a dialogue to actively control a drone
to increase perception and anomaly detection accuracy. We conduct our
experiments in a high fidelity simulation environment where an LLM is
provided with a predetermined set of natural language movement com-
mands mapped into executable code functions. Additionally, we deploy
a multimodal Visual Question Answering (VQA) model charged with
the task of visual question answering and captioning. By engaging the
two models in conversation, the LLM asks exploratory questions while
simultaneously flying a drone into different parts of the scene, providing
a novel way to implement active perception. By leveraging LLM’s rea-
soning ability, we output an improved detailed description of the scene
going beyond existing static perception approaches. In addition to in-
formation gathering, our approach is utilized for anomaly detection and
our results demonstrate the proposed method’s effectiveness in informing
and alerting about potential hazards.

Keywords: Active Anomaly Detection · LLM · VQA · Aerial Monitor-
ing

1 Introduction

In the last few years, drones have witnessed numerous technological advance-
ments, as well as great commercial exposure for their ability to perform difficult
tasks, such as surveillance, anomaly detection, and aerial monitoring in chal-
lenging environments. To effectively support these tasks and ensure the efficient
and autonomous operation of robots, large informative datasets, e.g., contain-
ing drone images, action states, and/or anomalies, were necessary in order to
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cover every possible scenario that could occur [1–3]. These approaches primarily
focused on collecting a large quantity of data and employing different learning
techniques to detect possible anomalies in autonomous drone flying scenarios.

With the major advancements in deep learning across numerous domains,
there have been multiple attempts to incorporate these modern, more effective
technologies for the sake of enhancing autonomous systems’ efficiency and ca-
pability. By deploying larger, more advanced deep learning models a substantial
improvement in performance was witnessed [4, 5]. Nevertheless, these methods
lack the ability to actively perceive the scene in order to issue the appropriate
control commands and further improve the perception accuracy based on the
current conditions. Such active perception approaches have shown promising re-
sults in other relevant domains in recent years [6–8]. However, it is not trivial to
implement such methods in open-world setups.

Fig. 1: Overview of the proposed model dialogue approach. First a drone cap-
tures an image. This image, along with an appropriate question, is fed to the
employed VQA model. Then, the VQA model provides a response that is fed
to the LLM model which in turn issues a movement command and a new ex-
ploratory question.

The main contribution of this paper is a novel approach for active percep-
tion and anomaly detection that leverages the capabilities of recent Large Lan-
guage Models (LLMs) by developing a model dialogue approach in which two
deep learning models interact in order to continuously improve the final pre-
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diction. To this end, we equip the employed LLM with complete navigational
control through a set of specific textual commands that ultimately navigate
a drone in real time, implementing an active perception scheme in which the
drone explores the scene and exploits potential hazardous scenarios and anoma-
lies. Furthermore, we incorporate a Visual Question Answering (VQA) model
in order to engage the two models in interactive conversation from which the
LLM acts as a controller that can extract meaningful textual information about
the unknown scene in which the drone operates. Our goal is to provide a de-
tailed description of the scene gathered throughout the conversation along with
explanations that led to these decisions. This dialogue process leads to an ac-
tive perception pipeline in which we can gather additional information about
the scene, as well as validate the scene details. The conducted experimental
evaluation shows that the proposed approach can indeed enable a drone to
successfully navigate an unknown open environment and provide an explain-
able and detailed description of the scene in a zero-shot fashion, as well as
detect anomalies and output potential safety measures in response to poten-
tially hazardous observations. The code used for the conducted experiments,
including detailed prompts and experimental results are provided at https:
//github.com/Tzoulio/Large_Models_Dialogue_for_Active_Perception.

The rest of the paper is structured as follows. Section 2 introduces the related
work, while the proposed method is presented in Section 3. The experimental
evaluation is provided in Section 4, while Section 5 concludes the paper.

2 Related Work

The task of Visual Question Answering [9] has increased in popularity in re-
cent years, with the ability to combine computer vision with Natural Language
Processing (NLP) resulting in a system that can process two types of different
modalities at the same time. Such an ability is crucial in robotics applications
considering they are often applied to scenarios and environments that require
handling such multimodal data. By giving a robot the ability to process multiple
data together at once, they increase the quality and quantity of information they
acquire, which in turn expands their overall knowledge of the world. As a result,
there have been multiple attempts at applying VQA in robotics. Some works
focus on having the robot interact with the environment and come up with an
answer to a specific question, mimicking the VQA task. Deng et al. [10] uses
VQA in a robotic manipulation scenario. They train a Deep Q Network (DQN)
and through reinforcement learning teach the robot to continuously manipulate
objects until they come up with the right answer. In [11] a Hierarchical Inter-
active Memory Network (HIMN) was deployed as a controller that allows the
system to store and retrieve information hierarchically in the form of memory
and enables the robot to provide an answer by interacting with its environment
in real-time. EmbodiedQA [12] is another approach that deploys a robot in an
unknown environment in which the robot learns to navigate through using imi-
tation learning and ultimately gathers the appropriate information to answer the
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question. Our work leverages the recent advances in VQA as a fundamental part
of the proposed pipeline by employing a VQA model which acts as the sensing
model, which processes the data acquired from the world and answers questions
regarding these.

After the breakthrough that LLMs made in the field of AI, researchers have
been constantly finding ways to utilize them in robotic applications. A lot of
works leverage the LLMs’ reasoning capabilities and language understanding
ability to act as a communicator between the human operator who issues a com-
mand in natural language and the robot who executes the command in the form
of code [13–16]. These approaches either directly map specific commands to code
snippets that are applied on the robot directly or provide enough resources to
the LLM to construct code and make specific API calls that will produce the
correct result on the robot, as specified in the natural language prompt. Gener-
ally, a lot of research is focused on advancing the LLM capabilities further, by
implementing different modules together with the LLM in an attempt to give it
multi-modal capabilities [17–19]. This resulted in a lot of works which combined
multi-modal variations of LLMs into robot task planning [20–22]. These works
utilize imitation learning to teach a control agent how to perform the natural
language tasks which are learned from a dataset consisting of sets of demonstra-
tions during different timestamps. In other works, such as [13], users are able to
control an aerial drone through natural language and prompt engineering. The
proposed method goes beyond these approaches by employing a dialogue-based
approach, in which only one model has full access to the visual modality and the
other model can interact with this model through textual prompts.

The proposed method is more closely related to recent attempts to combine
LLMs with VQA models. Some works [23–26] focus on initiating a conversation
between the two models to enhance the VQAs ability in the captioning task.
They start with a general caption of a query image and through ChatGPT’s
ability of understanding and generalising textual information an active dialogue
between the LLM and the VQA module is initiated. During the dialogue, Chat-
GPT makes inquiries about possible information that the image might contain.
Afterwards, the VQA model answers by confirming or denying and providing
additional information for the scene. The process continues until ChatGPT out-
puts a detailed description containing all the knowledge it gathered through the
conversation. Other methods follow a similar approach [27–29] by providing com-
plementary knowledge to the LLM in the form of captions. This enhances the
quality and flow of information, resulting in better answers and captions for the
query images. Our method builds on this idea, going beyond these approaches
by implementing active perception through the drone’s navigation scheme. We
collect a different image of the scene each time the drone reaches a new position.
At the same time, the employed LLM asks an exploratory question with each
movement command and the VQA model provides an answer and a caption.
This way, we are able to gather more information (extracted by the different
captions we get in every position) as well as explore parts of the initial image
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that the camera could not see either by them being obscured or simply by being
too far away.

3 Proposed Method

In this work, we aim to equip a drone with active perception and anomaly de-
tection capabilities in order to provide a robust scene description, as depicted in
Fig. 1. First, the drone leverages a VQA model which provides descriptions of the
environment through captions. In this way, the VQA model provides a way for
the LLM to “sense” the environment through text. Additionally, the VQA model
outputs an image-caption matching score in order to help the LLM distinguish
between good and bad captions. Then, the LLM validates the gathered textual
information through the VQAs question-answering module combined with ac-
tive perception and ultimately provides a generalized scene description together
with explainable attention maps. The outline of the proposed approach is shown
through an example in Fig. 2. This example should be used as a reference point
through the description provided in this Section, since it further clarifies how
the proposed method works.

For the VQA model, we incorporate the Plug-and-Play VQA (PnP-VQA)
[30] framework, as shown in Fig. 3. To perform the task of image captioning,
image-question pairs are processed by a pre-trained vision-language model called
BLIP [31] which is also able to output a similarity score between the image and
the question. The image is split into K patches and through GradCAM [32], a
feature-attribution interpretability technique, they are able to provide the most
relevant image patches. Finally, the image captioning module of BLIP is com-
bined with top-k sampling to generate captions only for the relevant patches.
Subsequently, the produced caption and question are fed into the question an-
swering module to produce the answer. For the LLM, we employed the GPT3.5
as our model [33].

Let the LLM model denoted by f(A,C), which takes two distinct text se-
quences as input A = [A1, A2, . . . , An], C = [C1, C2, . . . , Cm] and outputs a
response sequence Q = [Q1, Q2, . . . , Qk], in the form of a question i.e., Q =
f(A,C), where A denotes the answer to a previous question by the VQA model
(if exists) and C denotes a textual description (caption) of the current scene. In
this work, we employed the GPT3.5 model to implement f(·), while we feed the
concatenated A and C to the model. We assume Ai, Ci and Qi denote the indices
of words, while n, m and k denote the corresponding sequence lengths. Similarly,
the VQA network g(Q, I) takes as input the output sequence of the LLM Q, as
well as an image I, producing two different textual sequences A,C = g(Q, I),
where A is the answer to the question and C denotes the caption for the image.
Then, these outputs are fed to the LLM and this process repeats in an iterative
fashion.

To grant the LLM control of the drone we first define a set of diverse func-
tions, each one in charge of a specific navigational output. Afterwards, we provide
the drone with a detailed prompt consisting of a set of commands mapped to
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Fig. 2: A typical example of the operation of the proposed method. During active
perception, the two models engage in a conversation and exchange information.
In validation, a premature description and caption are chosen together and infor-
mation is validated by revisiting the saved positions. Then, in the explanation
mode, the final description and caption are provided together with attention
maps.
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Fig. 3: The employed VQA architecture.

a specific function apiece, certain rules the GPT3.5 outputs must follow, the
general goal of the task and tips on how to filter and extract information from
captions. Additionally, to prevent hallucination [34], i.e., imaginative and fabri-
cated outputs from the controller, we begin the prompt by informing LLM that
it is in a game scenario, the commands serve as its controls and the goal is to
provide a detailed description of the observed scene while looking out for any
possible anomalies that could lead to hazardous situations. The list of commands
is split into:

(i) Active perception commands
(a) Move closer, to move 10 meters forward.
(b) Move back, to move 5 meters backwards.
(c) Move right, to move 10 meters to the right.
(d) Move left, to move 10 meters to the left.

(ii) General control commands
(a) Save position, to save the current position of the drone.
(b) Ask a question, to ask exploratory questions.
(c) I know enough, to return to the starting position.

Additionally, we divide the diverse list of rules the LLM must follow into:

(i) General Rules, to make sure LLM outputs the commands and questions
correctly.

(ii) Active Perception rules, which ensure the proper movement of the drone.
(iii) Visual Question Answering rules, in order to utilize the captions and answers

as efficiently as possible and optimize the procedure.

The propose pipeline consists of the following: an active perception mode, a
validation mode and an explanation mode. Throughout active perception mode,
the drone’s camera takes snapshots of the observed scene and the controller asks
questions while simultaneously issuing different movement commands. The pro-
cess always starts with the question “What do you see?”. Consequently, the VQA
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model returns an answer, a caption and a percentage indicating if the caption
matches the specific image to help distinguish between accurate and inaccurate
captions. Through multiple diverse captions from different angles of the scene,
the LLM model is able to gain knowledge and by leveraging its language under-
standing capabilities it is able to generalize and understand the context, as well
as output possible safety measures for the specific scene. Then, during explo-
ration mode, we encourage the LLM (by providing the appropriate prompt) to
use the command save position whenever it deems it necessary in order to save
the current drone position and revisit it during validation mode. The process
continues until the LLM uses the command I know enough and transitions to
validation mode.

During the validation mode, we ask the LLM to output a description and a
caption of its current knowledge, along with which parts it wants to validate.
We add random Gaussian noise to the saved positions, in order to gain different
question-image pairs before inputting them to the VQA model again. In each new
position, the controller asks one validating question for each targeted piece of
information it wants to validate and we also save the question-image pairs which
hold the highest matching score percentage for explanation mode. Afterwards,
the controller compiles all the answers in each revisited position and leverages an
ensemble approach to update the scene description and caption. In the end, the
drone returns to its starting position outputting the final description, caption
and the safety rules about the scene.

Finally, in order to provide the ability to explain the conclusions drawn by
the developed pipeline, we extract the GradCAM’s visualization from our VQA
model in order to output attention maps on the validated images, as shown in
Fig. 2. As a result, when the drone returns to its starting position it is able
to output the question-image pairs through an attention mask, highlighting the
parts of the image that lead to its decisions on the captioning and question-
answering tasks.

4 Experimental Evaluation

All the experiments were conducted using the Airsim simulation environment
[35]. It is built upon Unreal Engine 4 and consists of a physics engine and
different environmental, vehicular and sensory models. By testing out the quad-
rotor vehicular model in multiple environments we can simulate a plethora of
scenarios that provide physical and visual feedback adjacent to the real world.
Specifically, our experiments take place in typical surveillance environments such
as a mountain landscape, a lake, a public square and a snowy road, as shown in
Fig. 4.

To quantitatively evaluate the performance of the proposed method we com-
pute the caption-image matching score (using the VQA model) at the drone’s
spawn position and at every subsequent position revisited during the validation
module. We then calculate the average caption-image matching score across all
positions for ten independent experiments. The results are reported in Table 1,
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Fig. 4: Four different environments were used for the conducted experiments: a
mountain landscape, a snowy road, a public square and a lake.

where we compare the baseline score (directly using the description at the start-
ing position of the drone), and the final validated result of the proposed method
(“Proposed”). Our results indicate that in different environments, the proposed
method consistently enhances the caption-image matching score, suggesting that
the generated captions provide more relevant information that aligns well with
the scene. Furthermore, we present the average run time required, to obtain
a validated, detailed scene description with explainable attention maps. Given
that the average experiment time is approximately 12 minutes and recognizing
that such a duration is impractical in hazardous situations, we introduce a spe-
cial rule in our prompt. This rule stipulates that whenever the proposed method
detects a potential anomaly, it must immediately stop exploration and proceed
with validation and result generation. By implementing this rule, we reduce the
average experiment time to under 5 minutes in anomaly induced scenarios.

Table 1: Average image-caption matching score (calculated over ten runs) for
each of the employed environments.

Environment Baseline Proposed Time of Experiment

Mountain Landscape 0.384 0.585 12mins 57secs
Public Square 0.361 0.699 12mins 28secs

Snow road 0.458 0.629 11mins 48secs
Lake 0.451 0.690 13mins 26secs
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Fig. 5: Example anomalies in the four different environments. Note that some
anomalies are challenging to detect and require very careful inspection of the
input frame.

Additionally, we assess our system’s performance on the task of anomaly de-
tection. By introducing potential hazards or dangerous elements, such as fires
and car crashes, into each scene (refer to Fig. 5 for some example anomalies),
we evaluate the baseline framework’s ability to accurately identify anomalies,
comparing it with the performance of our proposed system following the active
perception and validation phases. We consider the system successful in anomaly
detection when it identifies the anomaly in its captions in a coherent and gram-
matically logical manner. To evaluate the proposed method in scenes that contain
anomalies, we deploy hazards in three distinct scenarios. Initially, we position a
potential hazard within the range of the drone’s spawn point. Subsequently, we
increase the distance between the drone’s spawn point and the hazard. Finally,
we place the hazard in an obscured view from the initial drone spawn point ne-
cessitating movement to locate it. We conduct the experiments ten times for each
environment and present the accuracy of anomaly detection (averaging the ten
runs over the three setups), comparing the baseline and the proposed method,
in Table 2.

These results indicate that the drone succeeded in providing a description and
caption about the unknown scene whilst only relying on outputs from the VQA
model in the form of text. Moreover, when hazardous anomalies are introduced,
altering the scene to an unsafe condition, our system successfully identifies the
danger and suggests necessary safety precautions. Finally, the proposed pipeline
can also provide interpretable attention maps, leveraging GradCAM’s capabili-
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Table 2: Comparing anomaly detection accuracy between baseline and the pro-
posed method.

Method Environment Anomaly Detection Score

Baseline Mountain Landscape 0.53
Proposed Mountain Landscape 0.90

Baseline Public Square 0.43
Proposed Public Square 0.73

Baseline Lake 0.26
Proposed Lake 0.76

Baseline Snow 0.20
Proposed Snow 0.83

ties, both for the intermediate and final questions/captions, which showcase the
validated information in order for a human operator to assess. Two indicative ex-
amples are shown in Fig. 6, highlighting the improved explainability capabilities
provided by the proposed method. Furthermore, in Table 3, we compare the cap-
tions provided by the baseline model with the captions provided by the proposed
framework and in Table 4 we provide the detailed scene descriptions leveraged by
our proposed framework. Note that in most cases the proposed method leads to
a more accurate description. However, hallucinations can still occur despite the
validation process. Increasing the number of examination points and/or adding
additional validation steps could help further reduce these occurrences.

Fig. 6: Two examples for two different questions, indicating the additional explain
ability capabilities that can be provided by the proposed pipeline.
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Table 3: Caption examples provided by the baseline VQA model and the pro-
posed model. We highlight the correct pieces of information with the color green,
the wrong ones with the color red and the ambiguous ones with orange.
Scene Baseline Proposed

Mountain
Landscape

A view of rocky mountain
peaks that looks into the
horizon

A serene mountainous
landscape with mist,
snow-capped mountains, and
trees.

Snowy road in
mountainside

The snowy mountain is covered
in a thick blanket of snow.

A snowy mountain with a road
leading into glacier water.

Public Square A fountain park filled with lots
of water.

A lively fountain park
shrouded in dense fog with
water shoots creating a
mysterious atmosphere

Lake A group of tall vegetation on a
river.

A tranquil lake setting with
ducks, tall vegetation, and lush
green plants, offering a
picturesque natural landscape.

Mountain
Landscape with
fire

A huge flame and a cloud of
black smoke.

A devastating forest fire
consumes the valley,
threatening the green
vegetation and trees in its path.

Lake with a car
fire

The steam rises in the clouds
on a foggy day.

A car crash has occured, with a
truck damaged after crashing
into a river emitting smoke,
individuals trying to move the
stuck truck.
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Table 4: We showcase our methods ability to provide descriptions of the scenes,
after the information was gathered through Active Perception and after it was
validated through our validation module. We highlight the correct pieces of infor-
mation with the color green, the wrong ones with the color red and the ambiguous
ones with orange.

Environment Proposed Final Description

Mountain
Landscape

The aerial surveillance drone has captured a serene mountain landscape with
trees covering its slopes. While there is no visible forest in the scene, a clear
lake adds to the natural beauty of the surroundings. The absence of human
activity enhances the peacefulness of the environment.

Mountain
Landscape
with fire

The aerial surveillance drone captures a dramatic scene with a group of moun-
tains featuring rocky peaks in the background. In the foreground, a fire rages
with red lava and flames, casting a fiery glow. On the left side, a majestic
mountain stands tall, adding to the rugged landscape. Meanwhile, on the right
side, another fire burns with smoke billowing into the sky. The background
displays a computer artwork, adding a surreal touch to the overall view.

Snowy road in
mountainside

The scene depicts a tranquil snowy landscape with no specific objects or
anomalies present. The serene setting is characterized by the peacefulness of
the snow-covered terrain and the absence of any notable features.

Snowy road in
mountainside
with car crash

The scene depicts a snowy road with a truck traveling on it. The road is cov-
ered in snow, and there is a mountain nearby covered in heavy snow. The pres-
ence of the truck on the snowy road indicates a potential hazardous situation
that needs to be approached with caution.

Public Square The scene features a round, red tiled courtyard enveloped in fog, creating an
eerie and mysterious atmosphere. The fog obscures the surroundings, adding to
the sense of obscurity and intrigue. The digital object, previously mentioned,
is no longer present in the scene leaving behind a solitary and enigmatic court-
yard.

Public Square
with fire

The scene features a small fountain with water spraying, and an outdoor foun-
tain with a fire display, and a fire torch made of metal. Both the small foun-
tain and fire display have been confirmed to be present in the scene. The fire
torch made of metal is also part of the scene, adding to the overall ambiance.

Lake The scene portrays a tranquil river flowing with ripples at its center. Along the
riverbank, the trees stand tall and healthy, framing the water’s edge without
any nearby structures interrupting the natural beauty. Across the river lies a
park merging into a dense forest, enhancing the scene’s idyllic charm. A blan-
ket of fog envelops the surroundings, lending an air of mystery and serenity to
the landscape.

Lake with fire The scene features a body of water with a small boat floating in the middle. In
front of the boat, a tree is engulfed in flames, emitting orange burning flames.
The fire has spread to the bush tucker on a field with trees. However, there
is no floating island engulfed by flames as previously mentioned. Smoke rises
from the burning objects, creating a hazardous environment.

5 Conclusion

In this paper, we presented a novel framework that employs LLMs to actively
collect information and detect anomalies, even in unprecedented situations. We
propose a method where two deep learning models engage in dialogue to control
a drone and improve anomaly detection accuracy. We test our approach in a
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realistic simulation environment, where the LLM follows natural language com-
mands to move the drone, while a VQA model answers questions about images.
By combining these models, the LLM asks questions while guiding the drone
through the scene, providing a unique way to improve perception accuracy, as
well as detect potential anomalies. At the same time, by leveraging the explain-
ability capabilities of the employed VQA model, the proposed method can also
further improve the explainability of the perception process. By providing four
different types of scenes, with different hazardous situations in them and without
requiring any fine-tuning or retraining of the models, we demonstrate the po-
tential of the proposed method for handling open-ended adaptation in-the-wild.
Additionally, to the best of our knowledge, there is currently no other established
way to implement and evaluate active perception in unstructured open-world se-
tups. Therefore, this work opens several research directions, including effective
evaluation of approaches that extend beyond static perception and pave the way
for applications in other areas as well.
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