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Abstract
This report presents foundations for modelling and verifying self-adaptive intelli-
gent systems. First, we describe an abstract but formal view of the RoboSAPI-
ENS architecture for adaptation: MAPLE-K. For that, we extend a formal language
called RoboArch for describing architectural designs of robotic applications. We
describe the RoboArch metamodel, well-formedness conditions for the MAPLE-K
architecture, and its formal semantics. The formalisation is described in RoboChart,
a domain-specific diagrammatic notation for platform-independent, timed, reac-
tive behavioural modelling of control software, with a process algebraic semantics
described in a variant of CSP (Communicating Sequential processes).

Our second contribution here is an extension and mechanisation of RoboChart to
support the description of components implemented by a neural network. We
describe the metamodel and well-formedness conditions of RoboChart with neural
networks and its implementation as part of RoboTool: the Eclipse-based tool that
supports modelling and verification using RoboChart.

We give a semantics for our extension of RoboChart using Circus, a variant of CSP
and Z. We define and mechanise the semantics, obtaining a tool for the automatic
generation of Circus models that use the theorem prover, Isabelle. We also show
how Isabelle can be used to reason about Circus, and therefore, MAPLE-K models.
Guided by the needs of industrial partners, our focus at this stage is automated
proof of deadlock freedom, without concerns about model size, but the underlying
technology and compositional-proof approach are general.

Our third contribution is the definition of a conformance relation conf(ϵ) for intelli-
gent software that accommodates the loss of precision derived from using a neu-
ral network and the associated argument for compositional reasoning. We define
conf(ϵ) for an arbitrary Circus process and prove compositionality results. These
translate to compositionality results for RoboChart and RoboArch.

The use of neural networks may also introduce uncertainty in the software. Our
final contribution is a technique based on Monte Carlo dropout to quantify uncer-
tainty that may arise during the design and training of DL models. Based on the
model predictions, two types of novel quantification metrics are being used for
classification and regression. The method and metrics have been applied to the
DTI use case. We are also investigating the applicability of the method and metrics
to other use cases, such as the NTNU use case.

We also present our investigation into the potential of using large language mod-
els (LLMs) to identify uncertainties in robotic software. This will serve as the basis
for developing LLM-based uncertainty identification tools for our use cases.

We explain how all these results underpin our vision for the RoboSAPIENS frame-
work, and use examples inspired by RoboSAPIENS case studies to illustrate and
evaluate these results. This complements the work presented in D1.2.
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1 Introduction

First of all, this chapter presents the motivation for our work in Section 1.1, where
we highlight the contribution of WP1 to the RoboSAPIENS workflow (Figure 1), and
justify our choices of notations and techniques. Finally, in Section 1.2 we provide a
description of the structure of this report as a whole.

1.1 Motivation

Together with Deliverable 1.2, which describes our work on requirements, this de-
liverable describes our progress towards realising the conceptual framework of
RoboSAPIENS (left-hand side of Figure 1). Our goal is to provide notations and
techniques that can describe the conceptual artefacts of a RoboSAPIENS system
and provide the mathematical underpinning to demonstrably connect them (via
transformation or integration) to the design and realisation results.

This requires mathematical theories that can be unified to deal with software mod-
els and operational requirements. So, we opt for the RoboStar framework [CBB+21]
due to its process-algebraic semantics, underpinned by Hoare and He’s Unifying
Theories of Programming [HJ98a] (UTP). With that, we can carry out both sys-
tem and component-level reasoning, benefitting from stepwise and compositional
refinement-based techniques. Moreover, RoboStar provides a baseline of notations
accessible to practitioners: diagrammatic and controlled natural languages.

The process algebra used is CyPhyCircus [FCC+20, MSF20]. It combines the state-
rich process algebra for refinement Circus [CSW03], itself combining CSP [Ros11]
and Z [WD96a] for data modelling, with Differential Dynamic Logic [Pla10]. Both
Circus and CyPhyCircus have a UTP semantics, with a mechanisation in the Is-
abelle [NWP02] theoremprover called Isabelle/UTP [FCC+20,WCF+23]. Encoding
of Circus in standard CSP enables reasoning using the refinement model checker
FDR [GRABR14]. Isabelle/UTP provides complementary support via theorem prov-
ing to address the state explosion that hinders the use of model checking. This is
particularly the case when dealing with the CyPhyCircus hybrid models.

The RoboStar notation for architectural description is RoboArch [BCM22]. It has
been developed to allow the description of layered designs for platform-independ-
ent robotic control software, as well as design patterns for each layer. Most archi-
tectures used in robotics are described informally in the literature, with variations
often described by different authors. At best, patterns are realised in an implemen-
tation or programming language. Such descriptions mix the core concepts of the
architecture with those of the application or programming language.

RoboArch’s existing metamodel and well-formedness conditions specify a notion
of layered architecture and the reactive-skills architectural pattern for control lay-
ers. Formalisation of these architectures is achieved through transformation into a
RoboChart model. RoboChart [MRL+19] is a domain-specific language with a for-
mal semantics described in CSP. The transformation to RoboChart accurately cap-
tures the meaning of each architectural element defined in the RoboArch meta-
model. RoboArch’s model-transformation approach, based on 50 rules, is auto-
mated to generate a RoboChart model from a RoboArch architectural design.
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Figure 1: RoboSAPIENS big-picture high-level workflow.

In this report we present our extension of RoboArch to define a RoboSAPIENS ar-
chitecture: MAPLE-K. We provide a metamodel, well-formedness conditions, and
transformation rules. In doing so, we formalise the MAPLE-K architecture and its
variations. There are options to omit and coalesce the M, A, P, L, E, and K compo-
nents, as well as to execute the control loop sequentially or in parallel.

For intelligent RoboSAPIENS systems, RoboChart is insufficient. RoboChart pro-
vides a diagrammatic notation to describe a simple component model and be-
haviour using state machines. A RoboChart model for a control software is given
by a module block, containing a robotic platform block and one or more controller
blocks. A robotic platform describes variables, events, and operations that capture
an abstraction of the services of an actual robot that is used by the software.

The behaviour of a controller is specified by one or more state machines represent-
ing parallel threads of control. A controller or a state machine is an independent
modelling component whose behaviour is described using a well-defined context
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of variables, events, and operations. The observable behaviour is defined in terms
of the changes of values of shared variables, occurrence of events (input or out-
puts), and calls to operations (of the platform).

Following the suggestion in [ACW23], we present an extension of RoboChart to
allow the description of a controller via the hyperparameters of a trained, fully
connected feedforward artificial neural network (ANN). We give the metamodel,
well-formedness conditions, and semantics for this extension of RoboChart.

Refinement requires precision. A component or system A is refined by another
one B if the behaviours of B are allowed by A. For example, if B (after a particular
trace of interactions) can produce an output of value v over a channel out, that
same output, with the same value v, must be allowed by A. This is not appropriate
for ANNs, because an ANN will not have that level of precision, so we need to
characterise and accept results that are close enough.

For this reason, we formalise here a notion of conformance to replace refinement
when dealing with RoboChart models with ANN controllers. The new notion is
parametrised by a tolerance ϵ that bounds the acceptable loss of precision. More-
over, we present theorems that establish properties of the new notion of con-
formance needed to support compositional verification. Compositionality is now
predicated on the context, that is, other controllers, not requiring or being affected
by loss of precision as long as it is bounded by ϵ.

The RoboSAPIENS framework (see Figure 1) uses two additional RoboStar nota-
tions: RoboCert [WC22, YCF+22a] to capture properties, and RoboWorld to de-
scribe operational requirements. The latter is presented in Deliverable D1.2. Work
on the case studies will inform future extensions to these notations.

Use of an ANN may also lead to uncertainties. Here, we require the definition of
metrics as input for a technique for uncertainty quantification (UQ). Uncertainty
may arise during the design and training of deep learning (DL) models. A UQ
method based on Monte Carlo (MC)-Dropout is being developed. MC-Dropout
quantifies uncertainty in the model predictions. Based on the model predictions,
two types of UQ metrics are being developed for classification and regression,
which include not only standard metrics (for example, entropy) but also some
novel metrics (for example, prediction surface). Additionally, novel uncertainty-
based robustness metrics are being developed to assess the robustness of deep
learning (DL) models. Finally, a benchmark dataset construction method based on
VLM and an adversarial generation technique is being developed.

This deliverable describes the application of the UQ method and metrics to the
DTI use case, in particular to DL-based sticker detectors for the laptop refurbish-
ment process. We have evaluated the accuracy, uncertainty, and robustness of
various sticker detectors and provided guidelines for selecting detectors from dif-
ferent perspectives. The benchmark datasets used for evaluation have been con-
structed using two visual-language models (DALL-E and Stable Diffusion) and an
adversarial-generation technique called DAG. We are also investigating the appli-
cability of the UQmethod and metrics to other RoboSapiens use cases, such as the
NTNU use case, that is, DL-based digital twins for ships.

Moreover, to systematically identify uncertainties in robotic software, as part of
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building a holistic uncertainty identification and quantification solution, we present
an initial investigation into using Large Language Models (LLMs) for this purpose.
The results are based on the four RoboSAPIENS use cases. The results will be used
to develop LLM-based tools for identifying uncertainty in robotic software.

Finally, we present prototype tools that enable the evaluation of our notations and
techniques mentioned above, as well as their application to RoboSAPIENS case
studies. The first tool we describe is a mechanisation of RoboArch to support mod-
elling and validation based on the metamodel and well-formedness conditions de-
scribed here. More importantly, the transformation of RoboSAPIENS architectures,
as described in RoboArch, to RoboChart models is automated.

Further work is based on Isabelle. We report on our mechanisation of CyPhyCir-
cus in Isabelle/UTP. It is the basis formechanising amodel-to-model transformation
that connects the output of RoboTool to an Isabelle theory, allowing the use of the-
orem proving to reason about RoboChart models. We cover standard RoboChart
models and RoboChart models with ANN controllers.

We have also initial results on the mechanisation of legitimisation and trustworthi-
ness checking in Isabelle. We focus here on checks of deadlock freedom based on
RoboChart models. The approach and infrastructure of proof are, however, more
general. We will work on additional properties and even test generation using that
infrastructure. The vision is that replanning may and should lead to changes to the
RoboChart model, which can be used by a legitimiser or trustworthiness checker
to ensure the changes do not introduce problems.

In summary, we focus on this deliverable on the design and verification notations
and techniques in Figure 1. We present RoboArch, its transformation into RoboChart,
the enrichment of RoboChart with ANNs, associated verification techniques for
RoboChart, to support legitimisation, and uncertainty quantification metrics. In
the complementary Deliverable 1.2, we present RoboCert and RoboWorld, which
address software and system requirements. System requirements are assumptions
that complement the specification of the control software in RoboChart. The soft-
ware requirements are properties that a RoboChart model must satisfy.

1.2 Structure of the deliverable

In this report, Chapter 2 presents the precise characterisation of the RoboSapi-
ens architecture. As said, this is given by defining a metamodel, well-formedness
conditions, and a behavioural semantics.

Chapter 3 describes the support for reasoning about AI in RoboSAPIENS. We pro-
vide the metamodel, well-formedness conditions, and semantics of a diagrammatic
notation that can be used to specify AI-enabled software. A technique for compo-
sitional verification based on this notation and its semantics is in Chapter 4.

Uncertainty arising from the use of AI is explicitly addressed in Chapter 5. It also
describes an LLM-based approach to identifying uncertainties, to develop a com-
prehensive solution for uncertainty identification and quantification.

Tools for supporting the notations and techniques of Chapters 2, 3, and 4 are de-
scribed in Chapter 6. They are extensions of RoboTool and Isabelle.
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We conclude in Chapter 7. We summarise our results, and, importantly, we also
present detailed plans for the next 18 months of RoboSAPIENS, and beyond.
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2 RoboSAPIENS architecture for verification

This chapter defines the MAPLE-K architecture. In the next section, we present the
baseline technology: RoboArch [BCM22] via a very simple example. In Section 2.2,
we give an example of a description of an instance of the MAPLE-K architecture
using the extension of RoboArch we define here. Our example is the architecture
of the navigation example defined in Deliverable D5.1, deployed in a TurtleBot.

The actual definition of the architecture comes in Section 2.3, which defines an
extension of the RoboArch metamodel to include the MAPLE-K architecture, and
in Section 2.4, which defines a model-to-model transformation to map RoboArch
architectures into RoboChart behavioural models.

Afterwards, we present a brief account of related work in Section 2.5. We conclude
this chapter in Section 2.6, where we summarise our contributions.

A summary of this work has already been published [BvAK+25].

2.1 RoboArch

As noted, RoboArch architectures are layered, a structure widely used in robotics.
Each layer can have a pattern that describes its internal architecture, and uses
events and operations to communicate with other layers and the robot. We de-
scribe RoboArch via the example of an obstacle avoidance robot. In Fig. 2, we
describe the architecture of its software as a system called ObstacleAvoidance.

RoboArch uses the type system of the formal modelling notation Z [WD96a]. New
types can be declared to be used in specifying the data flow in the architecture.
Here, we define a record datatype Velocities, with two real fields.

RoboArch distinguishes communication between layers and communication with
the robot. Communication between layers uses input and output events only. Com-
munication with the robot is specified by a robotic platform, declaring (via inter-
faces) events and operations that describe services of the platform used by the
software. A RoboArch architecture is platform independent.

Here, we declare two interfaces, Motors and Sense, each with a single event. These
are declared in a robotic platform PuckRobot. With the uses keyword, we indicate
that the platform has points of interaction via the events of the declared inter-
face. Operations, on the other hand, are services provided by the platform, so
the provides keyword declares interfaces with operations. Events may be inputs,
outputs, or both, depending on the robotic firmware and API.

The declaration of each layer may give it a pre-defined type: either ControlLayer,
ExecutiveLayer or PlanningLayer, each with its restrictions following a commonly
used architectural definition. A layer without a type is generic, allowing alterna-
tive structures to be defined. Here, we define two layers: a generic layer called
Application, and a ControlLayer, called MoveAndSense.

Each layer declares inputs and outputs, which are events that may have a type. A
ControlLayer additionally uses or requires the same interfaces as the robotic plat-
form, since it is intended to coordinate communication with the robot.

12
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system ObstacleAvoidance

datatype Velocities {
linear:real
angular:real

}

interface Motors {
event move: Velocities

}

interface Sense {
event proximity: int

}

robotic platform PuckRobot {
uses Motors
uses Sense

}

layer Application {
inputs= eventReply:Events, …;
outputs= activate:Skills, deactivate:Skills, …;

} ;

layer MoveAndSense: ControlLayer {
uses Motors
uses Sense

inputs= activate:Skills, deactivate:Skills, …;
outputs= eventReply:Events, …;
pattern= ReactiveSkills;
…

} ;

connections=
Executive on activate to Control on activate ,
Executive on deactivate to Control on deactivate ,
…
Control on eventReply to Executive on eventReply ,
Control on activeSkills to Executive on activeSkills ,
…
Control on move to PuckRobot on move,
PuckRobot on proximity to Control on proximity;

Figure 2: An example of a RoboArch model

A layer can have a pattern. In our example, MoveAndSense uses the ReactiveSkills
pattern [BFG+97]. Declaration of a pattern establishes the additional information
required to specify the architecture. We omit details in Fig. 2.

After the layers, connections are defined between the events of the layers and the
robotic platform, ensuring a strict layering discipline is maintained.

RoboArch architectures can be translated to a RoboChart model. RoboChart has
similarities to RoboArch in its abstraction of the robotic platform and its type sys-
tem. A RoboChart model is a module, containing a robotic platform, declaring vari-
ables, operations, and events, as well as one or more controllers, with connections
between their events. A controller, in turn, either contains one or more state ma-
chines describing its behaviour, or is defined by an artificial neural network. Here,
we describe the features of RoboChart used in models generated from RoboArch
as needed. A full account of RoboChart can be found in [MRL+19].

2.2 Overview and example

The MAPE-K and MAPLE-K architectures are described in Deliverable 5.1. Here,
we provide a formal account of that architecture. Our formalisation enables the
definition of instances of a MAPLE-K architecture as illustrated in this section.

We have extended RoboArch to support MAPE-K and MAPLE-K by defining a new
MAPLE-K pattern type for a layer. An example of a layer with this pattern can be
seen in Fig. 3, which displays the MAPLE-K layer for the navigation example in
Deliverable 5.1, along with the types it utilises. The example of the DTI case study
is considered in Section 6.1, where we present our RoboArch tool.

Fig. 3 declares a layer named Adaptation, which is a PlanningLayer, since MAPLE-
K loops are intended to be the highest layers of a system, above the layers of
the managed system. As with other layers, it declares inputs and outputs, but
its pattern is set to the new MAPLE-K pattern. The pattern declaration is followed
by blocks declaring further information about the MAPLE-K components: monitor,
analyse, plan, legitimate and execute. Some of these blocks may be omitted to

13
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datatype SpinConfig {
commands: Seq(SpinCommand)
period: int

}

datatype SpinCommand {
angleVelocity: real
duration: real

}

datatype LidarRange {
...

}

datatype BoolLidarMask {
values: Seq(boolean)
baseAngle: real

}

datatype ProbLidarMask {
values: Seq(real)
baseAngle: real

}

layer Adaptation: PlanningLayer {
inputs = lidarData : LidarRange;
outputs = spinCommand : SpinConfig;
pattern = MAPLE-K;
monitor {

inputs = lidarData;
processed_data_type = LidarRange;
recorded_data = lidarScans : Seq(LidarRange);

}
analyse {

analysis_results = probLidarMasks : Seq(ProbLidarMask);
analysis_results = boolLidarMasks : Seq(BoolLidarMask);

}
plan {

plan_data = directions: Seq(SpinCommand);
}
legitimate {

// legitimate just signals success or failure
}
execute {

outputs = spinCommand;
}

};

Figure 3: An example of a MAPLE-K pattern in a RoboArch model

define variations on the pattern (for example, omitting legitimate for the traditional
MAPE-K), but monitor and execute must always be present to communicate the
inputs and outputs of the layer.

The first component, monitor, defines a list of inputs, which indicate which of the
inputs of the layer are inputs to the MAPLE-K loop. This distinguishes them from
other input events that may be used to communicate with the layer, such as events
for requesting information from the knowledge base or for allowing further adapta-
tion by a higher layer. In our example, the only input is lidarRange of type LidarRange,
representing the data read from the TurtleBot’s lidar. The monitor component may
record these inputs in the knowledge base and transform them to a processed form
convenient for further analysis in the analyse component.

The processed_data_type records the data type passed to the analyse component.
Here, it is LidarRange, the type of the input, since the input is not intended to be
changed by the monitor component. In other systems, the processed_data_type
could represent the output of an error correction technique, collect multiple inputs,
or add metadata such as timestamps to the input data.

The data recorded in the knowledge base by the monitor component is indicated
by recorded_data, which is a list of variable declarations that represent data to be
stored in the knowledge base. In Fig. 3, this list contains only a single variable,
lidarScans, which is a sequence of LidarRange values to which the input values are
written. In other systems, inputs may be written to variables in the knowledge
base in different ways. For example, several inputs may be combined into a single
variable in the knowledge base. Alternatively, an input may be recorded in multiple
variables depending on its value. For example, we can categorise readings above
and below a threshold for further checking in the analysis step by recording the
inputs in different variables.

The analyse component analyses the data received from the monitor component,
recording the analysis results in the knowledge base and determining whether an
anomaly has occurred. The results of the analysis are recorded in the variables
indicated by analysis_results, similar to recorded_data in monitor. In our example,
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Figure 4: Part of the RoboArch metamodel, showing the MAPLE-K pattern

analysis_results declares two variables: probLidarMasks and boolLidarMasks. The
probLidarMasks variable is a sequence of ProbLidarMask values, recording for each
LidarRange the probability that a lidar occlusion exists in each segment of the lidar
scan. Similarly, boolLidarMasks records a sequence of BoolLidarMask values with
a boolean determination (computed from probLidarMasks) as to whether a lidar
occlusion exists in each segment of the lidar scan.

The plan component formulates a plan tomitigate anomalies detected by the analyse
component and records the plan in the knowledge base using variables indicated
by plan_data, similar to recorded_data and analysis_results. In our example, this
is a sequence of SpinCommand values, indicating periodic rotations that the robot
should make to mitigate against the occlusion of part of its field of view.

The legitimate component verifies and validates the plan formulated by the plan
component, possibly recording additional information in knowledge base variables
indicated by verification_info. For our example, we do not require additional
information to be produced by the legitimate component, so verification_info is
omitted. The presence of an empty legitimate component still ensures that the
component is generated as part of the implementation.

Finally, the execute component executes the plan by using outputs of the layer,
possibly translating or spacing commands as needed. Similarly to the inputs in the
monitor component, the execute component records a list to indicate which outputs
of the layer are outputs of the MAPLE-K loop. In our example, this is the spinCommand
output, which sends a single SpinCommand to instruct the robot to spin.

2.3 MAPLE-K: Metamodel and well-formedness conditions

The syntax of RoboArch has an underlying metamodel. We have extended it to
include the MAPLE-K pattern as shown in Fig. 4.
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MK1 A Layer that has a pattern of typeMAPLEKmust be aGenericLayer
or PlanningLayer.

MK2 If an instance ofMAPLEK has a legitimate component, then it must
have plan component.

Figure 5: The well-formedness conditions for MAPLEK

The top level of a RoboArch architecture is an instance of the class System in Fig. 4.
It has one or more layers: instances of Layer. A layer may have a pattern repre-
sented by a subclass of Pattern. MAPLEK is the subclass for our new pattern.

MAPLEK has components representing each of the five steps of the MAPLE-K
loop: monitor, analyse, plan, legitimate and execute, each with its own type: Mon-
itorComponent, AnalyseComponent, PlanComponent, LegitimateComponent and
ExecuteComponent. These correspond to the monitor, analyse, plan, legitimate
and execute blocks shown in Fig. 3. As mentioned, all these components are op-
tional, except for monitor and execute, allowing for variations on the pattern.

Each component has its own parameters, corresponding to the items within its
block. Each component can also have its own pattern, allowing further variations of
MAPLE-K or standard structures for the components to be defined. The definition
of additional patterns for each of the components is ongoing.

In addition to its metamodel, RoboArch has well-formedness conditions that iden-
tify valid instances of its metamodel. These conditions further formalise the archi-
tectures captured in the metamodel, for which we can provide a formal semantics.
A full account of existing well-formedness conditions is in in [BCM22].

The first well-formedness condition, MK1, restricts the types of layers that can use
a MAPLEK pattern to just PlanningLayers and GenericLayers. This is because a
MAPLE-K loop is intended to go above the layers of the managed system, and
PlanningLayers are the topmost layer types. By allowing for a GenericLayer to use
MAPLEK as well, however, we cater for its use in variations on the usual layered
architecture. This can include, for instance, an architecture where we just separate
the MAPLE-K loop and the managed system, with no additional layers, or where a
MAPLE-K loop communicates directly with the robotic platform.

The second well-formedness condition, MK2, restricts the components that can be
omitted. The metamodel itself already ensures that a layer with a MAPLEK pattern
always has a MonitorComponent and an ExecuteComponent. However, the pres-
ence of a LegitimateComponent can only be needed if there is a PlanComponent
with planData variables containing a plan that might need to be legitimated. Thus,
MK2 requires a plan component to be defined whenever legitimate is.

2.4 Semantics: overview and rules

As noted, a RoboArch model can be automatically translated to a sketch of a
RoboChart model, with each layer translated to a RoboChart controller. This trans-
lation to RoboChart gives semantics to the structure represented by the meta-
model and well-formedness conditions. In this section, we discuss the RoboChart
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Figure 6: The RoboChart controller generated for the Adaptation layer in Fig. 3,
showing the events driving the MAPLE-K loop

corresponding to the MAPLEK pattern presented in the previous section, first pre-
senting an overview of the RoboChart for our example in Section 2.4.1, then dis-
cussing the translation from RoboArch to RoboChart in Section 2.4.2.

2.4.1 Overview

Fig. 6 shows the RoboChart controller for theMAPLEK layer Adaptation in Fig. 3, as
an example of how we capture the behaviour of a MAPLE-K architecture, particu-
larly when all components are present. As shown, each component of theMAPLE-K
loop is represented by a state machine, with an additional state machine, Knowl-
edge, representing the knowledge base. Each of the state machines is included
in the controller by reference and linked by event connections. These event con-
nections can be divided into two kinds: signals that drive the MAPLE-K event loop,
and events that communicate with the knowledge base to get or set data. The first
kind of events can be seen in Fig. 6, with connections linking the state machines,
but we omit the second kind of events in Fig. 6 due to their large number, so that
the flow of control can be seen more clearly. The omitted events are shown later,
in Fig. 7, where we hide the first kind of events for clarity of presentation.

The six state machines of the Adaptation controller all have their names prefixed
with Adaptation , to ensure the names are unique when there are multipleMAPLEK
layers. The state machine named Adaptation Monitor corresponds to the monitor
block in RoboArch. It receives inputs from the managed system and sends on
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processed data via an event processedData, which has the type of the monitor
component’s processed_data_type. The inputs are those declared in the RoboArch
model, in this case lidarData of type LidarRange, which represents data from a lidar
device detecting objects in the surroundings. The processedData event also has the
type LidarRange, corresponding to the processed_data_type provided in Fig. 3.

TheAdaptation Analysemachine is then triggered to start analysis by the receipt of
the processedData from the Adaptation Monitor state machine. When analysis is
completed, it signals via an anomalyFound event if an anomaly is found. This event
is connected to the requestPlan event of the Adaptation Plan state machine.

The Adaptation Plan state machine creates a plan to adapt to the anomaly after
it is signalled by requestPlan. It signals to the Adaptation Legitimate state ma-
chine on the planningCompleted event when a plan has been formulated. Adapta-
tion Legitimate receives the planningCompleted event as the verifyPlan event, sig-
nalling it to perform verification and validation on the plan. If the plan is rejected,
planRejected is signalled back to the Adaptation Plan state machine to indicate
that it should formulate a revised plan. If the plan is accepted, planAccepted is
signalled to the Adaptation Execute machine to execute the plan.

Adaptation Execute receives planAccepted via the executePlan event and com-
municates with the managed system via output events. It signals back to Adapta-
tion Analyse via adaptationCompleted when it has finished, allowing a new adap-
tation cycle to begin. As with the inputs, the output events are those listed in the
execute block. In this case, the only output is spinConfig of type SpinConfig, repre-
senting instructions for the robot to rotate as it moves to mitigate occlusions.

The knowledge base is represented by the machine Adaptation Knowledge, which
contains variables derived from recorded_data, analysis_results, plan_data and
verification_info in RoboArch. Asmentioned, the other components access these
variables via events to get and set their values, as shown in Fig. 7 (omitting the
events already included in Fig. 6). Each variable corresponds to several events:

1. for getting the value of a variable, an event named by prefixing the variable
name with get is provided to request the variable value, and the value itself
is then sent on an event named with the name of the variable itself,

2. for setting the value of a variable, an event named by prefixing the variable
name with set is provided, with a parameter type the same as the variable’s
type,

3. for components that use variables declared by other component, events are
provided as in 1 but suffixed with an underscore and the name of the com-
ponent using the value (for example, get directions Legitimate and direc-
tions Legitimate are provided to allow Adaptation Legitimate to use the vari-
able directions from plan_data),

4. for components external to the MAPLE-K controller to get values of variables,
events are provided as in 1 but suffixed with ext (such events are omitted in
Fig. 7, since they are unused, because the Adaptation RoboArch layer declares
no inputs or outputs corresponding to those events).

Each state machine is connected to the getter and setter events for the variables
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Figure 7: The RoboChart controller generated for the Adaptation layer in Fig. 3,
showing the events communicating data to and from the Knowledge component

declared in the corresponding RoboArch block. It also uses the getter events for
any other variables it should have access to, connected to the component-specific
events in the Knowledge state machine. Note that only the component that defines
a variable in RoboArch can use the setter events to write to it, thus ensuring the
knowledge will not be subject to arbitrary changes.

The control flow just described embeds a parallel execution of the MAPLE-K com-
ponents. It is possible to analyse for a new anomaly while one is already being han-
dled. The definition of Analyse enables application-specific logic to determine how
to handle new data received from the monitor. Plan can also use a new anomaly
coming in (disregarding the legitimate result for any plan already sent for verifi-
cation). An alternative semantics defines a sequential behavioural model. In this
version, events of one machine are used to trigger another.

Each of the state machines has a standard form, dependent upon the compo-
nents present in layer’s controller (and hence the communications required be-
tween them). We discuss them as part of presenting the translation rules next.

2.4.2 Translation from RoboArch to RoboChart

The translation from RoboArch to RoboChart is defined by a series of translation
rules that map elements of the RoboArchmetamodel to RoboChart constructs that
define their semantics. Existing translation rules define the top level of the transla-
tion, mapping RoboArch types and interfaces to equivalent RoboChart layers and
interfaces, and each layer onto a controller, defining event connections between
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Rule 1. Interfaces for a MAPLEK Layer (Rule 1 in Appendix A)
MAPLEKLayerToInterfaces(ammkl : Layer) : Set(Interface) =

ammkl.name Inputs

for ev in inputs

ev.name: ev.type
end for

ammkl.name Outputs

for ev in outputs

ev.name: ev.type
end for

ammkl.name InputVars

for ev in inputs

ev.name data: ev.type
end for

ammkl.name InputFlags

for ev in inputs

ev.name flag: boolean
end for


∪ RecordedDataInterfaces(ammkl.pattern.monitor.recordedData,ammkl.pattern)
∪
∪
{analyse : ammkl.pattern.analyse •
AnalysisResultsInterfaces(analyse.analysisResults,ammkl.pattern,ammkl.name)}

∪
∪
{plan : ammkl.pattern.plan •
PlanDataInterfaces(plan.planData,ammkl.pattern,ammkl.name)}

∪
∪
{legitimate : ammkl.pattern.legitimate •
VerificationInfoInterfaces(legitimate.verificationInfo,ammkl.pattern)}

where

inputs = ammkl.pattern.monitor.inputs

outputs = ammkl.pattern.execute.outputs

provided

ammkl.pattern instanceof MAPLEK

controllers that enforce the layering policy. Further types and interfaces are de-
fined for each layer, along with state machines and connections within a controller,
depending on the pattern of the layer, if present.

For the MAPLEK pattern, there are no additional types defined beyond those de-
fined explicitly in the RoboArch model. The interfaces for theMAPLEK pattern are,
therefore, defined by Rule 1, which takes a Layer as its parameter and returns a set
of interfaces to be included in the corresponding RoboChart model.

The rules present RoboChart elements in a graphical format, along with meta-
notation in grey and underlined. This meta-notation includes for loops to specify
repeated elements, and if statements to specify conditional elements. Abbrevia-
tions of model elements are specified in a where clause, and conditions restricting
the application of the rule are stated in a provided clause. Here, we focus on the
rules defining themain RoboChart components corresponding to theMAPLEK pat-
tern. The full rules, including those here, can be found in Appendix Atoo.

Rule 1 applies only to layers where the pattern isMAPLEK, and begins with defining
interfaces for the inputs of its monitor component and the outputs of its execute
component. The interfaces (as well as the state machines, defined in later rules) are
named using the name of the layer with a suffix to ensure there are no conflicts if
multiple MAPLEK layers exist. For brevity, we refer to the interfaces by their name
after the layer name prefix. The interface Inputs records the events of inputs them-
selves, and, similarly, the Outputs interface records the events of outputs. These
interfaces are used to include events in the state machines for the components.
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Rule 2. Interfaces for Recorded Data Variables (Rule 2 in Appendix A)

RecordedDataInterfaces(rdvr : Set(Variable),pat : MAPLEK,name : String) =

name RecordedData

for var in rdvr
var.name: var.type

end for

name RecordedData events

for var in rdvr
var.name: var.type

get var.name
end for

name RecordedData set events

for var in rdvr
set var.name: var.type

end for

name RecordedData ext events

for var in rdvr
var.name ext : var.type

get var.name ext
end for



∪
∪


a : pat.analyse •

name RecordedData Analyse events

for var in rdvr
var.name Analyse: var.type

get var.name Analyse
end for


∪ · · ·

The interface InputVars declares variables for holding the values communicated
by the inputs, named with the name of the event appended with data. Similarly,
the InputFlags interface declares variables of boolean type for each of the inputs,
named named with the name of the event appended with flag. These are used in
the Monitor state machine to collect the values communicated by the inputs and
record that a communication has occurred on each.

Rule 1 extends these interfaces via set union, with various interfaces for the knowl-
edge base variables declared by each component. The declarations of these in-
terfaces are defined by functions defined in further rules. Each of these functions
receives the list of variables for the interface, the pattern for the layer (to check for
the presence of optional components), and the name of the layer (to include it in
interface names). For the variables originating from optional components, we use
a set comprehension syntax to use the function only if that component exists, and
a unary union operator to flatten the resulting set of sets.

As an example of one of these functions, we show the definition of Recorded-
DataInterfaces in Rule 2. This defines the events and variables corresponding to
the recordedData variables declared in a MonitorComponent. The RecordedData
interface contains the variables themselves, which are used in defining the knowl-
edge base. The RecordedData events interface defines the events for getting the
value of the variables: one with the same name and type as the variable for com-
municating the value, and one with the name of the variable prefixed with get and
no type for signalling a request for the value. The corresponding events for setting
the value of the variable are declared in the RecordedData set events interface,
with the name of the variable prefixed with set and the same type as the variable.
Having these in a separate interface allows them to be omitted from components
that are not permitted to set the value of the variable.
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Rule 3. Machines and Connections for a MAPLEK layer (Rule 6 in Appendix A)

MAPLEKPatternToMachinesAndConnections(ammkl : Layer) : (Set(StateMachine),Set(Connection)) =

if #ammkl.pattern.legitimate = 0 then

if #ammkl.pattern.plan = 0 then

if #ammkl.pattern.analyse = 0 then MEKMachinesAndConnections(ammkl)

else MAEKMachinesAndConnections(ammkl)

end if

else

if #ammkl.pattern.analyse = 0 then MEPKMachinesAndConnections(ammkl)

else MAPEKMachinesAndConnections(ammkl)

end if

end if

else

if #ammkl.pattern.analyse = 0 then MPLEKMachinesAndConnections(ammkl)

else MAPLEKMachinesAndConnections(ammkl)

end if

end if

provided

ammkl.pattern instanceof MAPLEK

The other interfaces declared in Rule 2 define distinguished events to allow compo-
nents other than Monitor to get the value of the variables. The events are similar
to those in RecordedData events, but with a suffix to distinguish them. Those
in RecordedData ext events are suffixed with ext and used by components ex-
ternal to the layer to get the variable values. The RecordedData Analyse events
interface is defined in a set comprehension and union, so that it is only definedwhen
the analyse component is present. It defines events suffixed with Analyse, which
are used by the knowledge base to allow the Analyse machine to get the values
of the variables. Interfaces are defined in a similar way for Plan and Legitimate
to get the values of the variables, but we omit these in Rule 2 for brevity.

The functions defining the remaining interfaces (AnalysisResultsInterfaces, Plan-
DataInterfaces and VerificationInfoInterfaces) are declared in further rules, which
we omit here but present in full in Appendix A. They are similar to Rule 2, declaring
interfaces with events for accessing the variables they consider, including inter-
faces for any other components that need to use those variables.

The RoboChart controller corresponding to the RoboArch layer is created by an
existing rule, which adds the inputs and outputs of the Layer to the controller and
invokes a further rule defining the state machines for the Layer’s pattern and the
connections between them. The rule defining the state machines and connections
for the MAPLEK pattern is Rule 3. It takes the Layer as input and outputs a pair
of sets of StateMachines and Connections. It is divided into several different cases
using nested if statements to handle the different cases of presence or absence
of the optional components. In these if statements, the optional components are
treated as sets, which are emptywhen the component is not present; we then check
the cardinality (#) of the set. The three optional MAPLE-K components, plus the
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MK2 well-formedness condition, result in six cases that must be considered, each
of which is handled by a separate function, to which the Layer is passed.

As an example of one of these six cases, we show in Rule 4 the definition of the
function MAPLEKMachinesAndConnections, which defines the state machines and
connections when all the components of the MAPLE-K loop are present. It gener-
ates six state-machine references, which point to machine definitions specified by
further rules. The connections between them are defined as shown in Fig. 6, with
the boundary of the controller (defined outside of the rule) denoted by a dashed
line. Additional connections, linking components to the knowledge base, are added
in further rules, joined to the sets with a union operator. These additional rules
are reused for the structure of connections with fewer components in other rules,
retaining only those rules relevant for the components included in the controller.
Since these rules for connections to the knowledge base are quite large and the
connections they generate are shown in Fig. 7, we omit them here.

Each of the rules for generating the state machines takes in the corresponding
RoboArch component (except for KnowledgeStateMachine, which just uses the
previously defined interfaces), theMAPLEK pattern itself (to check for the presence
of other components), and the name of the layer (to prefix names). Rule 5 defines
the MonitorStateMachine function, which defines the Monitor state machine. It
uses the Inputs, InputVariables, InputFlags, RecordedData events and Recorded-
Data events interfaces defined previously. This allows it to use the events from
those interfaces and includes local variables from those interfaces for storing val-
ues. Additionally, Monitor defines two further variables: outputData, which has
the type of the processedDataType and is used to store the data to be output, and
dataToSend, a boolean variable indicating whether there is data to be output. The
processedData event is also defined, with the processedDataType as its type.

The body of Monitor contains states and transitions to define its behaviour; the
states are intended to be extended with application-specific behaviour. The first
state is Initialise, which allows for application-specific initialisation to be added. A
transition goes from Initialise to ReadInput, where the machine waits until input is
available. An application-specific delay or waiting condition can be added here
to control how frequently the monitoring occurs. The transitions out of ReadIn-
put are triggered by the input events from the Inputs interface (with one transi-
tion per input), storing the parameter of the event to the corresponding variable
from InputFlags. After the transition is triggered, the corresponding variable from
the InputFlags interface is set. This allows the machine to handle multiple inputs,
checking which have been received and resetting the InputFlags variables.

After one of the input transitions has been triggered, the Monitor state machine
enters the ProcessData state, where application-specific processing of the data in
the InputVariables variables may be performed, followed by the RecordData state,
where data can be written to the knowledge base in an application-specific way.
Allowing for these functions to be separated across two states means they can be
presented more clearly. During the processing or recording of the data, a deter-
mination should be made as to whether the data can be sent to the Analyse state
machine, and this should be indicated via the dataToSend variable. This determi-
nation could be based on factors such as whether sufficient data has already been
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Rule 4. Machines and Connections for a MAPLEK layer with all components (Rule 7
in Appendix A)

MAPLEKMachinesAndConnections(amptn : MAPLEK) : (Set(StateMachine),Set(Connection)) =

stm ref0 =

monitor

processedData
: amptn.monitor.processedDataType

for ev in amptn.monitor.inputs
ev.name : ev.type

end for

stm ref1 =

analyse

processedData
: amptn.monitor.processedDataType

anomalyFound

adaptationCompleted

stm ref2 =

plan
requestPlan planningCompleted

planRejected

stm ref3 =

legitimate

verifyPlan

planAccepted

planRejected

stm ref4 =

execute

planAccepted

for ev in amptn.execute.outputs
ev.name : ev.type

end for

adaptationCompleted

stm ref5 =

knowledge

for ev in amptn.monitor.inputs
ev.name : ev.type

end for

for ev in amptn.execute.outputs
ev.name : ev.type

end for

∪MAPLEKKnowledgeExternalConnections(amptn)
∪MAPLEKMonitorKnowledgeConnections(amptn)
∪MAPLEKAnalyseKnowledgeConnections(amptn)
∪MAPLEKPlanKnowledgeConnections(amptn)
∪MAPLEKLegitimateKnowledgeConnections(amptn)
∪MAPLEKExecuteKnowledgeConnections(amptn)

where

monitor = MonitorStateMachine(amlyr.pattern.monitor,amlyr.pattern,amlyr.name)

analyse = AnalyseStateMachine(amlyr.pattern.analyse,amlyr.pattern,amlyr.name)

plan = PlanStateMachine(amlyr.pattern.plan,amlyr.pattern,amlyr.name)

legitimate = LegitimateStateMachine(amlyr.pattern.legitimate,amlyr.pattern,amlyr.name)

execute = ExecuteStateMachine(amlyr.pattern.execute,amlyr.pattern,amlyr.name)

knowledge = KnowledgeStateMachine(amlyr.pattern,amlyr.name)
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Rule 5. Monitor State Machine (Rule 15 in Appendix A)

MonitorStateMachine(mon : MonitorComponent,amptn : MAPLEK,name : String) : StateMachine =

name Monitor

name Inputs
name InputVariables
name InputFlags
name RecordedData events
name RecordedData set events
outputData : mon.processedDataType

dataToSend : boolean
processedData : mon.processedDataType

Initialise ReadInput ProcessData

RecordDataSendData

for input in mon.inputs
input.name?input.name data
/input.name flag = true

end for

[not dataToSend]

[dataToSend]

/processedData!outputData;
dataToSend = false

communicated for an error correction technique to be applied. If there is data to
send, it should be placed into the outputData variable. The guards on the transi-
tions coming out of a junction after the RecordData state check the value of the
dataToSend variable. If dataToSend is false, then a transition back to ReadInput is
taken to allow more data to be obtained. Suppose dataToSend is true. In that case,
a transition is taken to SendData, where further preparation for sending the data
may be made (including calculating outputData, if not calculated earlier), before
a transition back to ReadInput is taken. The transition communicates the output-
Data to Analyse via the processedData event and then sets dataToSend to false
to ensure the same data is not mistakenly re-sent.

The Analyse machine is defined by the AnalyseStateMachine function in Rule 6.
It uses the AnalysisResults events and AnalysisResults set events interfaces to
allow it to write the results of the analysis. It also uses the RecordedData events
interface, so that it can read (but not write) the data recorded in the Monitor
state machine to use in its analysis. It also declares local variables: data, to receive
the processedData coming from the Monitor state machine, anomalyDetected, to
record whether the analysis detected an anomaly that needs to be signalled, and
awaitingAdaptation, to record whether an anomaly has been signalled and adap-
tation in the later MAPLE-K components is being awaited. The Analyse machine
use three events to communicatewith the other MAPLE-K components: processed-
Data, from the Monitor machine, anomalyFound, signalled to the Plan machine
(or to Execute if plan is not present in the pattern), and adaptationCompleted,
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Rule 6. Analyse State Machine (Rule 16 in Appendix A)

AnalyseStateMachine(analyse : AnalyseComponent,amptn : MAPLEK,name : String) : StateMachine =

name Analyse

name AnalysisResults events
name AnalysisResults set events
name RecordedData events
data : amptn.monitor.processedDataType

anomalyDetected : boolean
awaitingAdaptation : boolean

processedData : amptn.monitor.processedDataType

anomalyFound
adaptationCompleted

Initialise WaitForData

AnalyseAnomalyAnalysisComplete

processedData?data

[not anomalyDetected]

[anomalyDetected]
/anomalyFound;

awaitingAdaptation = true;
anomalyDetected = false

adaptationCompleted
/awaitingAdaptation = false
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which is received from Execute when the adaptation has been performed.

The body of the Analyse state machine begins with the Initialise state, just as
the Monitor state machine does. After transitioning out of that state, it enters
the WaitForData state, where it waits for data to be sent from the Monitor state
machine via the processedData event and stored in the data variable. When the
data has been received, the state machine enters the AnalyseAnomaly state, where
application-specific analysis can be performed, and then theAnalysisComplete state,
from which an anomaly may be signalled. During the analysis, the presence of an
anomaly is recorded via the anomalyDetected variable, and AnalysisComplete has
two transitions out of it depending on its value. When anomalyDetected is false,
the state machine just transitions back to WaitForData without any signalling or
updates of variables. When anomalyDetected is true, the anomaly is signalled via
the anomalyDetected event, the awaitingAdaptation variable is set to true to signal
that adaptation is in progress. The anomalyDetected variable is reset to false so
that the anomaly is not signalled a second time. It is left to the implementation to
determine how the awaitingAdaptation variable should be handled in the analysis,
whether that is ignoring anomalies when an existing adaptation is in progress, set-
ting higher thresholds for subsequent anomalies, or ignoring awaitingAdaptation
altogether.

Whether or not anomalyDetected is true, the Analysemachine returns to theWait-
ForData state. While there, Analyse may receive an adaptationCompleted event
from Execute, signalling that the adaptation has finished. This causes the awaitin-
gAdaptation variable to be reset to false, allowing a new adaptation to begin.

Rule 7 defines the Plan state machine, derived from the plan component of the
MAPLEK pattern. This rule is split into two cases based on whether or not there
is an legitimate component in the pattern, since its presence means that the pos-
sibility of the plan being rejected must be handled. Here, we omit the case where
there is no legitimate component, since it is similar, and note in our explanation
where it differs from the case with a legitimate component. It uses the interfaces
PlanData events and PlanData set events to allow the plan to be written to the
knowledge base, but also RecordedData events, to provide input for planning,
and VerificationInfo events, to provide input for replanning after a plan is rejected.
The state machine also declares events planningCompleted, to signal when a plan
has been formulated, and planRejected, to receive a signal that the plan has been
rejected. If the legitimate component is not present, the VerificationInfo events
interface and planRejected event are not included, since they are involved in com-
munication with the Legitimate state machine. The event used to initiate planning
depends on whether or not the pattern has an analyse component. If analyse is
present, then the AnalysisResults events interface is used in addition to the other
interfaces, and the requestPlan event is used to receive the signal from the Analyse
state machine. If analyse is not present, then the signal to begin planning is the re-
ceipt of processedData directly from the Monitor state machine. Therefore, an
event is declared along with a data variable to store its parameter.

The body of the Plan state machine begins with an Initialise state, as for the other
state machines. It then transitions to a WaitForSignal state, where it waits for a
signal on requestPlan or processedData, depending on whether the analyse com-
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Rule 7. Plan State Machine (Rule 17 in Appendix A)

PlanStateMachine(plan : PlanComponent,amptn : MAPLEK,name : String) : StateMachine =

if #amptn.legitimate = 0 then

· · ·
else

name Plan

name PlanData events
name PlanData set events
name RecordedData events
name VerificationInfo events
planningCompleted
planRejected

if # amptn.analyse ̸= 0 then

name AnalysisResults events
requestPlan

else
data : amptn.monitor.processedDataType

processedData : amptn.monitor.processedDataType
end if

Initialise

WaitForSignal MakePlan

PlanMade

WaitForVerification

Replan

if #amptn.analyse ̸= 0 then
requestPlan

else
processedData?data

end if

planningCompleted

planRejected

if #amptn.analyse ̸= 0 then
requestPlan

else
processedData?data

end if

end if

28



D1.1 - RoboSAPIENS: RoboArch, RoboChart, and UQ (Public Document)

Rule 8. Legitimate State Machine (Rule 18 in Appendix A)

LegitimateStateMachine(l : LegitimateComponent,amptn : MAPLEK,name : String) : StateMachine =

name Legitimate

name VerificationInfo events
name VerificationInfo set events
name RecordedData events

if #amptn.analyse ̸= 0 then name AnalysisResults events end if

name PlanData events
planLegitimated : boolean

verifyPlan
planAccepted
planRejected

Initialise WaitForSignal PerformVerificationverifyPlan

[planLegitimated]/planAccepted

[not planLegitimated]/planRejected

ponent is present or not, before entering the MakePlan state. Implementation-
specific planning is performed in the MakePlan state, before transitioning to the
PlanMade state, where any post-processing of the plan can be performed. In par-
ticular, PlanMade is entered after both planning and replanning, so it can include
post-processing common to both. When the plan has been made, it is signalled via
planningCompleted on the transition out of PlanMade, and a WaitForVerification
state is entered. InWaitForVerification, the state machine waits for either a signal
that replanning is needed via planRejected, whereupon it enters Replan followed
by PlanMade to formulate a new plan, or a signal that a plan should be made in a
new adaptation loop via requestPlan or processedData, whereupon it entersMake-
Plan again. If legitimate is not present, the WaitForVerification and Replan states
are omitted, and the transition from PlanMade instead goes toWaitForSignal.

The Legitimate state machine is defined by Rule 8. It uses VerificationInfo events
and VerificationInfo set events, to allow information about the verdict given by
the legitimation to be recorded in the knowledge base. It also uses the inter-
faces for the other knowledge base variables to assist in legitimation, although
AnalysisResults events is only included if the analyse component is present (plan
must be present per the well-formedness conditions). A boolean variable, planLe-
gitimated, is used to record the outcome of legitimation. The verfiyPlan event is
declared, to signal legitimation should begin, and planAccepted and planRejected
to signal the outcome to the other components.

As with the other state machines, it begins with an Initialise state followed by a
WaitForSignal state. In the WaitForSignal state, it waits for a signal via verifyPlan,
then transitions to PerformVerification, where application-specific verification and
validation can be performed, with the result recorded in planLegitimated. There are
two transitions out of PerformVerification: if planLegitimated is true, then planAc-
cepted is signalled, and if it is false, planRejected is signalled. Both transitions then
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Rule 9. Execute State Machine (Rule 19 in Appendix A)

ExecuteStateMachine(e : ExecuteComponent,amptn : MAPLEK,name : String) : StateMachine =

name Execute

if #amptn.plan ̸= 0 then name PlanData events end if

name Outputs events
if #(amptn.analyse ∪ amptn.plan) = 0 then

data : amptn.monitor.processedDataType

processedData : amptn.monitor.processedDataType
else

executePlan
end if
if #amptn.analyse ̸= 0 then adaptationCompleted end if

Initialise WaitForSignal SendOutputs

FinishAdaptation

if #(amptn.analyse ∪ amptn.plan) = 0 then
processedData?data

else
executePlan

end if

if #amptn.analyse ̸= 0 then
adaptationCompleted

end if

return toWaitForSignal to wait for the next request to verify the plan.

The Execute machine is defined by Rule 9. It uses the PlanData events inter-
face to read the plan, if a plan component is present, and the Outputs events to
send the outputs to the managed system. In the absence of a plan, Execute may
perform a standard adaptation, or perform some simple planning. It also declares
an event to receive the signal to begin executing the plan, which is processed-
Data, along with a data variable to receive its parameter, if no other components
are present to receive that from the Monitor state machine, or executePlan oth-
erwise. If an analyse component is present, it must be signalled when adaptation
is completed so that the Analyse state machine can allow other adaptations to
begin, and an adaptationCompleted event is included for this purpose.

As with other state machines, Execute begins with Initialise and WaitForSignal
states. In the WaitForSignal state, Execute waits for a signal to begin execution
of the plan, either via processedData (storing its parameter into data) if there are
no other components to receive it, or via executePlan if another component has
already received processedData. After a signal has been received, Execute enters
the SendOutputs state where the plan is sent to the outputs in an application-
specific fashion, before transitioning to FinishAdaptation, where any finalisation of
the execution can be added. Afterwards, Execute transitions back toWaitForSig-
nal, signalling adaptationCompleted if the analyse component is present.

The Knowledgemachine, which stores the knowledge base, is defined by Rule 10.
It uses the interfaces for the knowledge base variables (RecordedData, Analysis-
Results, PlanData and VerificationInfo), with those derived from optional compo-
nents conditional on their presence. Knowledge also uses the interfaces con-
taining the events to access these variables, such as RecordedData events and
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Rule 10. Knowledge State Machine (Rule 20 in Appendix A)

KnowledgeStateMachine(amptn : MAPLEK,name : String) : StateMachine =

name Knowledge

name RecordedData
if #amptn.analyse ̸= 0 then name AnalysisResults end if

if #amptn.plan ̸= 0 then name PlanData end if

if #amptn.legitimate ̸= 0 then name VerificationInfo end if

name RecordedData events
name RecordedData set events
name RecordedData ext events

if #amptn.analyse ̸= 0 then name RecordedData Analyse events end if
· · ·
if #amptn.analyse ̸= 0 then

name AnalysisResults events
· · ·

end if
if #amptn.plan ̸= 0 then

· · ·
end if
if #amptn.legitimate ̸= 0 then

· · ·
end if

Knowledge

for v in amptn.monitor.recordedData
get v.name/v.name!v.name

end for

for v in amptn.monitor.recordedData
set v.name?v.name

end for

for v in amptn.monitor.recordedData
get v.name ext/v.name ext!v.name

end for

for v in
∪
{ p: amptn.plan @ amptn.monitor.recordedData }

get v.name Plan/v.name Plan!v.name
end for

for v in
∪
{ l: amptn.legitimate @ amptn.monitor.recordedData }

get v.name Legitimate/v.name Legitimate!v.name
end for

for v in
∪
{ a: amptn.analyse @ amptn.monitor.recordedData }

get v.name Analyse/v.name Analyse!v.name
end for

if #amptn.analyse ̸= 0 then KnowledgeAnalysisResultsTransitions(amptn, name) end if
if #amptn.plan ̸= 0 then KnowledgePlanDataTransitions(amptn, name) end if
if #amptn.legitimate ̸= 0 then KnowledgeVerificationInfoTransitions(amptn, name) end if
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RecordedData set events. The interfaces for the state machine-specific versions
of these are also used, if the corresponding component is present. For example,
RecordedData Analyse events is included when analyse is present. Due to the
large number of interfaces used, we omit most of them for brevity.

The body of Knowledge has only a single state, Knowledge, with transitions for
getting and setting each variable included as looping transitions on this state. The
transitions for getting the value of the variable are triggered by the event named
with get followed by the name of the variable, after which Knowledge outputs the
value of the variable via the event with the name of the variable. The transitions
for setting the value of the variable are triggered by the event named with set
followed by the name of the variable, with its parameter stored into the variable.
This asymmetry is because RoboChart does not allow a transition to be triggered
by an output. Separate transitions are provided for other components getting the
value of a variable, but those for optional components are included by iteration over
a flattened set comprehension, so they are not included when the corresponding
component is not present. The rule presented here includes the transitions for
the recordedData variables, and the transitions for other variables are included via
functions with the same parameters defined in other rules. We omit these other
rules as the transitions defined are similar to those for recordedData.

In Appendix A, we present the full set of rules described here.

2.5 Related work

Over the years, several variations and applications of MAPE-K have been pro-
posed [ARS15, PDPB14, BCG+12, BSML18]. For instance, [PDPB14] proposes a dual-
layer MAPE-K approach to ensure both localised and global self-management ca-
pabilities in middleware for wireless-sensor networks that can dynamically adapt
to changing contexts (that is, fluctuating network topologies, limited energy re-
sources, and hostile conditions). The architecture employs two levels of autonomic
management: the Sensor MAPE-K Layer manages self-adaptation at the node level
(individual sensors); and the Network MAPE-K Layer (NML) oversees the entire
network, handling collective adaptation decisions.

The authors in [BCG+12] propose a structural approach to identify the key char-
acteristics of adaptive systems, going beyond traditional behavioural definitions.
They emphasise the fundamental role of control data in enabling adaptive be-
haviour. Here, adaptation is framed as the runtime modification of control data,
distinguishing it from static or pre-defined behaviour changes in non-adaptive sys-
tems. Beyond the MAPE-K loop, the paper identifies other adaptive patterns, such
as internal and external control loops (depending on whether the control logic is
embedded within the system or operates externally), reactive adaptation (that is,
systems that directly respond to environmental changes without a complex control
loop), and towers of adaptation (that is, hierarchical adaptation, where adaptive
components manage other adaptive components).

The authors also describe adaptivity in various computational paradigms: Context-
Oriented Programming, where adaptation occurs through dynamic context changes
affecting code execution; Declarative Programming, where adaptivity is achieved
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by modifying rules or logic clauses at runtime; Rule-Based Systems, where adap-
tation happens via dynamic rule changes, often supported by reflection or meta-
programming; Concurrency Models (for example, Petri Nets and process algebras),
where adaptation is by changes in control tokens or communication patterns; and
Reflective Systems, which can modify their own structure and behaviour through
meta-level computations.

As far as we know, however, our extension to deal with legitimisation is not con-
sidered elsewhere. In addition, our work is unique in that we create a pathway
from high-level, albeit formal, descriptions of architectures based on MAPLE-K to
deployment architectures and code. In this way, developers can: (1) describe ar-
chitectures using accessible notation; (2) verify properties, potentially involving
timing; and (3) use the same architecture for deployment, preserving both prop-
erties and structure. In what follows, we review some of the works that have taken
advantage of formal modelling and reasoning in conjunction with MAPE-K applica-
tions and frameworks.

Several works align with our goal of formalising architectures based on MAPE-K
loops, albeit with very different approaches and applications. For instance, Ar-
caini et al. [ARS15] introduces a formal framework for modelling, validating, and
verifying self-adaptive systems based on MAPE-K. The authors leverage Abstract
State Machines (ASMs), particularly multi-agent ASMs, to specify decentralised and
concurrent control mechanisms for adaptation. The framework models the classic
MAPE-K loop, explicitly representing each phase as ASM transition rules. The focus
is on ensuring functional correctness of self-adaptive behaviours, especially when
multiple feedback loops operate simultaneously. The approach enables validation
through the simulation of adaptation scenarios using the ASMETA toolset [asm],
identifying inconsistencies early in the design phase, and verification via formal
model-checking techniques to verify adaptation properties and detect potential
interferences or conflicts between feedback loops.

A similar approach is proposed in Camilli et al. [CBC18], where they introduce a
formal framework for modelling and analysing self-adaptive systems with decen-
tralised adaptation control using Petri nets. Their framework supports the vali-
dation and verification of the MAPE-K components, demonstrated through a self-
optimising cluster management system. The framework architecture consists of
two key layers. The Base-Level Layer models the managed system and its en-
vironment using Petri Nets, capturing the system’s static structure and nominal
behaviour, including resource allocation and service interactions. The High-Level
Layer leverages High-Level Petri Nets (HLPNs) to implement MAPE-K loops for
various adaptation concerns. This layer includes an emulator to encode and ma-
nipulate the Base-Level Layer, an API for defining read/write operations (sensors
and actuators) that interact with it, and a Managing Subsystem that runs multiple
MAPE-K loops, each addressing specific adaptation goals, such as, energy effi-
ciency and performance optimization. A key novelty is the use of HLPNs to rep-
resent structural changes and dynamic reconfiguration in self-adaptive systems,
which enables the detection of undesired behaviours, such as conflicting adapta-
tions and inconsistent system states.

Finally, Weyns et al. [WCM+23a] introduces ActivFORMS (Active FORmal Models
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for Self-adaptation), an end-to-end, formally grounded, model-driven approach to
engineering self-adaptive systems. ActivFORMS addresses key challenges in en-
suring correctness, efficiency, and flexibility, especially under runtime uncertainties,
such as fluctuating workloads and resource availability. The approach spans de-
sign, deployment, runtime adaptation, and evolution, providing formal guarantees
at each stage.

The authors also present ActivFORMS-ta, a tool-supported instance of ActivFORMS
that leverages timed automata and statistical model checking to maintain sys-
tem correctness at runtime, enabling efficient adaptation through statistical model
checking (SMC), and real-time verification without exhaustive state exploration.
The authors validate ActivFORMS through DeltaIoT, an Internet of Things (IoT)
application for smart-building security monitoring, deployed at KU Leuven. The
system consists of 15 IoT motes strategically placed for tasks such as access con-
trol, temperature monitoring, and occupancy detection. The key adaptation goals
of the system include maintaining packet loss below 10%, minimizing energy con-
sumption, and dynamically adding new goals during operation, such as reducing
latency to improve system responsiveness.

The use of legitimisation is relevant in the context of all these works, for enhanced
autonomy and safety. We provide here a precise account of the MAPLE-K archi-
tecture, including its formal semantics at both conceptual and deployment lev-
els. This paves the way for integrating our results within the frameworks just de-
scribed.

2.6 Final considerations

We have presented in this chapter a formal conceptual account of the RoboSAPI-
ENS MAPLE-K architecture and its variations. This is a precise description of the
architecture that, at the same time, enables the definition of adaptive systems that
adopt that architecture. With these definitions, we enable formal verification via
RoboChart and its semantics, as well as a connection to AADL, for the definition of
realisation details of an implementation. Verification is also discussed in this deliv-
erable. Connection to AADL is presented in [BvAK+25] and in Deliverable 5.2.
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3 RoboChart with neural networks

This chapter presents our extension of RoboChart to support components whose
behaviour is defined by a neural network. These ANN components allow the neural
network model of computation to be part of a system of interacting components.
Inclusion of these components in RoboChart allow reasoning about systems with
neural networks rather than focusing on a single network.

We provide an overview and an example RoboChart model with an ANN compo-
nent in Section 3.1. Next, we describe our extensions to RoboChart’s metamodel
and well-formedness conditions for ANN components in Section 3.2. We then pro-
vide a denotational semantics for ANN components in Section 3.3. Related work is
mentioned in Section 3.4. Section 3.5 concludes with a summary.

This work has been published recently in [AYF+25].

3.1 Overview and example

In our work, we extend RoboChart with a new form of controller defined by an
ANN block. In Fig. 8, we present a RoboChart module for a Segway robot that in-
cludes an ANN component AnglePIDANN. This module, called Segway, contains a
robotic platform SegwayRP, a standard controller SegwayController, and an ANN
controller AnglePIDANN. SegwayRP has events representing data provided by the
segway sensors and operations to control movement via the segway motors. Seg-
wayController describes the behaviour of this system, defined through three state
machines: BalanceSTM, RotationPID and SpeedPID.

Figure 8: An example RoboChart module containing an ANN component.
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As shown in Fig. 8, the block SegwayController comprises three blocks that repre-
sent references to its state machines, as described in [BC19]. SegwayController ex-
hibits a cyclic behaviour defined by BalanceSTM, which updates the motor speeds
using the outputs of the PID machines and of the AnglePIDANN controller to main-
tain the segway’s upright position. In the original version of this example, there
is a third state machine, AnglePID, which specifies a standard PID to control the
angle of the segway. In our version here, we have an ANN instead, with the same
interface. Just like AnglePID, the ANN component AnglePIDANN accepts as input
the events anewError and adiff and communicates its output through the event
angleOutputE.

The block for an ANN component (marked using the symbol ) has its behaviour
defined by some parameters defined in three blocks. First, in the Parameters block,
we define the activation function (ReLU, in the example), the layer structure, the
weights as a triple nested sequence, and the biases as a double nested sequence.

Next, in the Inputs block, we define the events, or interfaces containing events,
that the ANNController treats as inputs. In this example, we use a single defined
interface, ANNInput, that contains two events, adiff and anewError, defined in a
block outside the SegwayANN module. Lastly, we define an Outputs block that
defines the events the ANNController uses as outputs.

We define an ANNController as a cyclic controller: it waits to receive communica-
tion from all input events in any order, then, when it has received them, it engages
in its output events in an arbitrary order, then repeats. This controller style can
never choose to terminate itself, but it will terminate when the system does.

We can model the RoboSAPIENS case studies involving ANN components. In Fig-
ure 9 we show an in-development RoboChart model representing the screen un-
screwing aspect of the DTI case study, with an ANN component to replace a par-
ticular service of the example. The case study involves a robot arm designed to
unscrew laptop screens.

The module for our RoboChart model is DTISoftware. As shown in Figure 9, it
contains three blocks: IKANN, UnscrewingController, and RobotArmRP. Here, Un-
screwingController is an incomplete (as shownwith the ellipsis) controller designed
to perform the unscrewing task. It has a single state machine reference (Unscrew-
ingSTM) and requires a single interface (JointsI) representing operations to adjust
all six joints of the robot arm. The robotic platform (RobotArmRP) provides the
required interface JointsI to the system.

IKANN models an ANN component that is trained to replace an inverse kinematics
service. Given Cartesian coordinates (captured by the events x, y, and z) of the
desired position of the end effector of the robot arm, it computes the angle that
each joint must be in to ensure that the end effector reaches the given coordinates.
The output events of this ANN are j1 to j6, representing the angle in radians that
the joints should be in to reach the desired coordinates. The ANN has two hidden
layers, each with 128 nodes, and both use the ReLU activation function; we define
these parameters through a given file, ikann params, because defining the weights
in the component itself would be too verbose.

Next, we present themetamodel andwell-formedness conditions of ANNControllers.
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Figure 9: A sketch of the RoboChart module for the DTI case study. Here, the
ellipsis means that the model is incomplete. The parameters of th ANN (IKANN)
are defined in a file named ikann params.

3.2 Metamodel and well-formedness conditions

Our extension of RoboChart adds a few classes to its metamodel, shown in Fig-
ure 10. They introduce the concept of an ANN as an abstract class. Instances of
ANN can be a RoboChart controller—our focus here—or an operation. Figure 10
shows ANNController, which inherits from another class, GeneralController, omit-
ted in Figure 10. A controller in RoboChart is typically used to represent functional-
ity allocated to a computational unit or a self-contained architectural component.
Our extension allows a controller to be defined by an ANN.

An ANN includes ANNParameters to define the hyperparameters and the trained
parameters of an ANN component, as shown in Figure 10. (The complete meta-
model is in Appendix B.) The activation function is given using an enumerated type.
Here, we give semantics only to an ANN that uses ReLU, which is suitable for using
Marabou in reasoning. The use of our semantics in conjunction with other func-
tions is straightforward. Moreover, given the nature of process algebra, explicitly
devised to model networks (of processes), our overall approach is well suited for
exploration of any ANN structure. This will be part of future work.

We capture the input layer, including its size, through an inputContext and the
output layer by an outputContext. Such a context can be used to define, possibly
via interfaces, input and output events to connect the ANN to other RoboChart
components. Context is an existing RoboChart concept used to define the interface
of every component. Each Event in an inputContext or outputContext must be of
a new class, OrderedEvent, which adds an integer to an Event definition to specify
an order for the inputs and outputs of an ANN component.
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Figure 10: Metamodel for ANN components in RoboChart: classes in grey are ab-
stract, attributes in grey are inherited, and attributes in bold are not optional.

We capture the trained parameters through references weights, a three-dimen-
sional tensor (represented as a triple-nested sequence), and biases, a matrix (a
double-nested sequence). The class SeqExp captures sequence expressions.

The range to which an ANN is normalised is captured through a pair annRange.
(Typically, this range is between −0.5 and 0.5, or 0 and 1.) We capture the range
that each input value can take through inRanges, and the range for outputs with
outRanges: both are sequences of pairs. Normalisation is a common consideration
when defining an ANN; it involves scaling all input ranges in the training data to a
new range with a mean close to 0 [LBOM98].

The reference filename supports using ANN parameter files (using formats such as
ONNX, for instance) instead of explicitly defining parameter values.

Our well-formedness conditions for ANN are listed in Appendix B.1. They assert
that the parameters are defined either in the model itself or in a linked file. They
also ensure that the trained parameters’ size and shape correspond to the hyper-
parameters and that the size of the normalisation sequences matches the number
of inputs and outputs to the component, and, for each element in these sequences
representing a range, the maximum is strictly greater than the minimum. Finally,
at the RoboChart model level, we ensure that connections to and from the ANN
component are in accordance with its definition of input and output events.

Next, we present the semantics of these well-formed ANN components.

3.3 Semantics: overview and rules

This section presents our denotational semantics. We introduce Circus and then
provide an overview of the semantics and present key definitions. The complete
definition of all semantic rules is given in Appendix B.2.

38



D1.1 - RoboSAPIENS: RoboArch, RoboChart, and UQ (Public Document)

3.3.1 Circus

Circus [Oli06] is a process-algebraic language for the specification of concurrent
systems; it defines data models and control behaviour of independent compo-
nents: processes. State declarations and actions define their behaviour; every pro-
cess has one main action that defines its behaviour. Actions are similar to CSP
processes [Hoa85] but define stateful behaviour. The definition of a basic Circus
process has the form: process Proc =̂ begin . . . • Aend. Here, the process is named
Proc and has main action A. The body of the definition, between begin and end,
contains declarations of state variables and actions that are local to Proc. We de-
scribe selected Circus action operators used in our semantics in Table 1; further
details are provided as needed. A Circus process can also be defined in terms of
other processes, using process operators similar to CSP’s. We do not use a com-
position of processes here, but it is through these operators that we can combine
the semantics of an ANN controller, which is a Circus process, with those of other
components in a RoboChart model.

The semantics of Circus [Oli06] is defined using Unifying Theories of Program-
ming [HJ98a] (UTP). It defines processes and actions as reactive contracts [FCC+20]:
alphabetised predicates that capture their reactive behaviour. The UTP-based re-
active contracts semantics is ideal for supporting theorem proving.

3.3.2 Overview

As mentioned earlier, the semantics of an ANN controller is a Circus process. Fig-
ure 11 depicts the structure of the main action of such a process. We capture every
node of the ANN as a Circus action, and then define each layer as the parallel com-
position of these actions, with the whole ANN being the parallel composition of the
layer actions. We treat the input nodes as input for the first layer. The parallel com-
position of node actions, represented by the parallel lines between them in Figure
11, and the parallel composition of layer actions define the expected data flow.

The Exchange of information between nodes, represented by the lines connect-
ing node actions in Figure 11, is captured by CSP events on a channel layerRes.
The event layerRes.l.n is for communication from the nth node of the l-th layer. A
layerRes.0.n event represents the n-th input of the ANN, and layerRes.layerNo.n,
the n-th output; here, layerNo is the number of layers.

Each node action is defined by the parallel composition of actions that receive
communications from the previous layer, passing this information, after applying
the node’s weight, to another action that calculates the node’s overall output. Intra-
node action communications are via a channel nodeOut. A nodeOut.l.n.i event is
for the i-th input of the node n in layer l.

3.3.3 Semantic Rules

We formalise our semantics via a set of rules that together define a function [[C]]ANN

from a RoboChart ANN controller C to a Circus program including some channel
and constant declarations, and a process. This semantics fits into the definition
of a process formalising a RoboChart model that includes the ANN component as
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Figure 11: A diagram showing the structure of our semantics of ANN controllers.
Circles represent actions representing nodes, and labelled edges represent com-
munications. The parallel lines denote parallel composition between actions. We
have parallel composition at both the node and layer levels. The ellipses indicate
that we allow for an arbitrary hidden layer structure and support any input and
output layer size. In the top left-hand corner, we also show the internal structure
of a node action.

Rule 1. Semantics of ANN Components [[c : ANNController]]ANN : Program =

ANNChannelDecl(c)

ANNConstants(c)

ANNProc(c)

specified in [ACW23]. Here, we provide an overview of these rules; the complete
set can be found in Appendix B.2.

A rule definition consists of a number and a brief description, followed by the dec-
laration of the function defined by the rule and an expression in a metalanguage
that specifies the function. In that expression, elements of the metalanguage are
underlined. Our top-level rule (Rule 1), specifying an element of the top-level Circus
syntactic category Program, is defined by three functions: ANNChannelDecl, which
specifies channel declarations (as described above); ANNConstants, which speci-
fies constants; and ANNProc, which gives the behaviour of the process. We define
ANNProc in Rule 2; the complete definitions ofANNChannelDecl andANNConstants
are omitted here but can be found in Rules 3 and 4 of Appendix B.2.

The rule ANNConstants first records constants corresponding to attributes of C:
weights, biases, annRange, inRanges, outRanges, and layerstructure. Further, the
rule defines constants for the function relu (the activation function), the input to
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each layer layerInput (derived from the controller C), and the normalisation func-
tions norm, normIn, and denormOut. Our semantics defines a normalised ANN, so
we normalise every input using the function normIn, then denormalise every output
using denormOut. These functions are defined as norm, which scales a value from
one range to another.

The constants layerstructure and layerInput give the shape of our Circus semantics;
for our example, these take the values as shown below. We obtain these constants
from the ANN component in RoboChart, AnglePIDANN: we present a graphical
representation of this component in Figure 13. We use these constants to illustrate
our semantic rules throughout this section.

layerstructure = ⟨1, 1⟩
layerInput = ⟨2, 1, 1⟩

The process, an element of theCircus syntactic category ProcDecl, is defined by the
function ANNProc(C) defined in the Rule 2 presented here. That process is named
according to the name attribute of C. Its main action is CircANN(C), shown after

the •. This action uses the local actions ANN and Interpreter, which capture the
data flow of the ANN, to define its behaviour within the RoboChart context: using
the input and output events of the RoboChart model, dealing with normalisation,
and handling termination.

For example, we consider the RoboChart module SegwayANN partially shown in
Figure 13. It has two controller blocks: SegwayController defined by a state ma-
chine, and AnglePIDANN defined by an ANN. We give the complete semantics of
AnglePIDANN in Figure 12, which was generated using Rule 2. In the semantics
of AnglePIDANN, the action ANN captures the behaviour of the ANN in terms of
its hyperparameters and its trained parameters. The action Interpreter captures
normalising all input communications to the ANN, then denormalising all output
communications from the ANN. Using these actions, we define the main action of
the process for AnglePIDANN in Figure 12 using parallel composition (A J | cs | K B),
hiding (\), and interrupt (

a
).

The parallel composition of Interpreter andANN captures the behaviour of our ANN
in terms of the input and output events of the controller. The definition of the sim-
ple Interpreter action is determined by the semantic function Interpreter(C), which
is omitted here. Interpreter takes inputs for the controller in any order and out-
puts their normalised values, in any order, via layerRes.0 events to ANN. It also
takes outputs from ANN via layerRes.layerNo (where layerNo is the index of the
last layer) events and outputs their denormalised values. Figure 12 presents the
Interpreter action for our example; here, we have two inputs (anewError in and
adiff in), and one output (angleOutputE out). Interpreter first behaves as the in-
terleaved composition of two sub-actions, each of which accepts an input event
and then communicates the normalised (with normIn) value of this event to a
layerRes.0 event. Next, Interpreter waits on the single output event of the ANN ac-
tion (layerRes.2.1); when received, it outputs the denormalised (with denormOut)
value on the angleOutputE out channel. Finally, Interpreter repeats and waits for
fresh input events.

In Circus, A J | cs | K B defines the parallelism of actions A and B, which can per-
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Rule 2. Function ANNProc ANNProc(C) : ProcDecl =

processC.name =̂ begin

Collator =̂ l,n, i : N; sum : Value •
(i = 0)N layerRes.l.n !(relu(sum+ (biases(l)(n))))−→ Skip

@
(i > 0)N nodeOut.l.n.(layerInput(l)− i+ 1) ?x−→

Collator(l,n, (i− 1), (sum+ x))

Edge =̂ l,n, i : N •
layerRes.(l− 1).i ?x−→ nodeOut.l.n.i !(x ∗ (weights(l)(n)(i)))−→ Skip

Node =̂ l,n, inpSize : N •
((; i : 1 . . inpSize • Edge(l,n, i))

J | {|nodeOut.l.n |} |K
Collator(l,n, inpSize, 0)) \ {|nodeOut.l.n |}

HiddenLayer =̂ l,n, inpSize : N •
(J{| layerRes.(l− 1) |} K i : 1 . . s • Node(l, i, inpSize))

HiddenLayers =̂ HiddenLayers(C)

OutputLayer =̂ OutputLayers(C)

ANN =̂ (HiddenLayersJ | {| layerRes.(layerNo(C)− 1) |} |KOutputLayer) ;ANN
Interpreter =̂ Interpreter(C)

• CircANN(C)

end
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process AnglePIDANN =̂ begin

. . .

HiddenLayers =̂ HiddenLayer(1, 1, 2)

OutputLayer =̂ J{| layerRes.1 |} K i : 1 . . 1 • Node(l, i, 1))

ANN =̂ (HiddenLayersJ | {| layerRes.1 |} |KOutputLayer) ;ANN
Interpreter =̂

(anewError in?x−→ layerRes.0.1.(normIn(1,x))−→ Skip 9
adiff in?x−→ layerRes.0.2.(normIn(2,x))−→ Skip);

layerRes.2.1?y−→ angleOutputE out.(denormOut(1,y))−→ Skip;

Interpreter

• ((Interpreter J | {| layerRes.0, layerRes.2 |} | K ANN) \ {| layerRes |})a
terminate−→ Skip

end

Figure 12: Circus semantics for the ANN controller AnglePIDANN, generated via an
application of Rule 2. The ellipsis (. . .) denotes that the definition of the Collator,
Edge, Node, and HiddenLayer actions are constant in Rule 2, so are omitted here.

form any events outside of cs set independently but must engage on any event in
cs. Here, Interpreter and ANN synchronise on the set containing all layerRes.0 and
layerRes.layerNo. We hide all communications on layerRes, so Proc defines inter-
actions over the inputs and outputs of the controller, as expected: anewError in,
adiff in, angleOutput out.

Finally, the main action of an ANN controller process can be interrupted (operatora
) by an event terminate, raised if all the controllers of the RoboChart terminate,

and so the whole software, including the ANN, also terminates (Skip).

ANN is defined by the parallel composition of actionsHiddenLayers andOutputLayer,
synchronising on layerRes.(layerNo(C)− 1) events, and sequentially composed with
ANN in a tail recursion. HiddenLayers and OutputLayer are defined by seman-
tic functions (omitted here) that compose in parallel actions for the hidden layers
and the output layer’s nodes. HiddenLayer has parameters l, n, and inpSize and
captures the semantics of the lth layer with n nodes and inpSize inputs coming
from the previous layer or to the ANN as a whole. In our example, shown in Fig-
ure 12, the ANN component has only a single hidden layer, soHiddenLayers is simply
HiddenLayer(1, 1, 2), denoting the 1st layer with 1 node and 2 inputs. We can derive
the number and size of the hidden layers using the layerstructure sequence, and
we know the input size of each layer through either that sequence or the number
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Figure 13: Part of RoboChart module with an ANN for segway control defined in
the block AnglePIDANN. The first parameter is the activation function, ReLU. The
second parameter is the layer structure: ⟨1, 1⟩. The third and fourth parameters are
the trained parameters: the weights and biases. The remaining three parameters
are associated with normalisation: the inRanges, the outRanges, and the annRange.

of elements in the input context—the input size. We define OutputLayer as a layer
with no parameters; in our example, see Figure 12, OutputLayer is the distributed
parallel composition of just 1 Node action, because our example has one node in
its output layer (the last element of layerstructure denotes the size of the output
layer). The definition of this action is similar to that of HiddenLayer in Rule 2.

The definition of HiddenLayer uses a replicated alphabetised parallelism Jcs K i : T •
A(i) composing actions A(i) in parallel, with i ranging over T synchronising on all
events in the set cs. For HiddenLayer, the index i ranges from 1 to n, composing
n processes Node(l, i, inpSize) which capture the semantics of the ith node of the
layer l. Synchronisation is on the layerRes.(l− 1) events representing the inputs to
the layer (see Figure 11).

Node(l,n, inpSize) is defined by the replicated sequential composition (;) of inpSize
actions Edge(l,n, i), in parallel with a Collator action. Edge actions collect inputs
from the layerRes.(l− 1) channels providing those values to Collator after applying
the weights via the nodeOut channel. Collator sums its inputs to define the node
output, communicated via layerRes.l. This output includes the bias and reflects
the output of the activation function relu. This action uses a one-based index for
nodeOut events to match the sequential composition of Edge actions; we use the
sequence layerInput to define this index, where layerInput(l) is the size of layer l−1,
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or the input size for the first layer. The definitions of HiddenLayer, Node, Edge, and
Collator are identical for every ANN.

The automatic generation of the semantics of a RoboChart model that includes an
ANN component is already implemented as described in Chapter 6.

3.4 Related work

Weconsider two relatedwork categories: component-level and system-level verifi-
cation. We have discussed component-level verification in [ACW20] and [ACW23].
Here, we will discuss other approaches to capturing larger systems that involve
neural network components. Furthermore, we will discuss work focused on en-
abling formal verification and the differences in what they can capture.

The first approach we will discuss is the work presented in [IJH+21]. They present
ANN components in the context of Simulink diagrams, a tool formodelling software
systems. They propose training ANN components to replace Simulink controllers.
Further, they discuss how their approach can enable formal reasoning using the
Simulink Design Verifier 1. However, they do not present formal semantics for the
ANN components, and they mention that this verification is limited.

The approach in [IJH+21] enables code generation via C, and they discuss how to
utilise the CMBC model checker2. Using CMBC enables them to prove system-level
properties obtained from the Simulink diagram for the code that implements an
ANN component. The authors comment that this verification approach is chal-
lenging to scale for realistic properties. While this approach is based on models
used for specification, they are not formal models, so the formal material is not
application-independent, but rather specific to the case study considered.

The approach in [IJH+21] provides pre- and postconditions of components in au-
tomata. These conditions can be used to verify the system-level properties of AI-
enabled software. The authors discuss a framework for task splitting, where each
task is subdivided into smaller tasks, an ANN component is learnt for every task,
and the entire system is verified. The method is compositional, that is, it includes
training a separate ANN component for each sub-task and contains a method to
support compositional verification of the resultant system of ANN components.
Due to the type of formalisation, the approach is designed to capture the physical
dynamics of a robotic system, rather than its reactive properties.

VEHICLE [DKA+24] is a domain-specific language designed for the high-level spec-
ification of ANN components. The VEHICLE language is based on functional pro-
gramming, λ-calculus, with support for arithmetic, vectors, and logic. The authors
translate this language to a format that Marabou can read via the approach de-
tailed in [DAK+23]. This approach does not provide an explicit model of the sys-
tem’s behaviour, which is provided on a case-by-case basis in a separate interactive
theorem prover (the authors mention Agda [LB06] as an example). Using the in-
teractive theorem prover Agda would allow them to prove system-level properties.

1uk.mathworks.com/products/simulink-design-verifier.html
2cprover.org/cbmc/

45

uk.mathworks.com/products/simulink-design-verifier.html
cprover.org/cbmc/


D1.1 - RoboSAPIENS: RoboArch, RoboChart, and UQ (Public Document)

The VEHICLE compiler also translates the specification to a loss function that Ten-
sorFlow can use to train an ANN based on this specification.

Our work is distinct in that it can establish system-level reactive properties of sys-
tems involving ANN components. We consider systems based on abstractions of
system communications: events and channels. We design specifications that for-
mally characterise a system’s intended interaction with the environment and its
users. This allows us to design specifications that capture timing, probability, and
reason about a system’s reactivity and availability for interaction.

3.5 Final considerations

In this section, we have presented an extension and mechanisation of RoboChart
with novel ANN components. This work enables automated reasoning about the
reactive behaviour of software systems with AI components. To the best of our
knowledge, it is also the first work to support this style of verification. This work is
specifically tailored to embedded design and verification of software for robotics
using the RoboChart framework. Verification is the topic of the next chapter.

In the next chapter, we discuss how, given the formal semantics of ANN compo-
nents as presented here, we can enable formal verification via theorem proving for
properties of software involving ANN components.
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4 Verification with RoboChart and ANN

Our semantics of an ANN component uses real-valued communications on events.
As such, model checking is not sufficient: we require a theorem proving approach
to prove properties about systems involving our ANN components.

As mentioned, Circus, which we use to define the RoboChart semantics, itself has
a UTP semantics [Oli06]. We use it here to describe and justify a proof-based ap-
proach to verify that a RobChart software model with an ANN controller is correct
with respect to a similar model that, instead, uses a traditional controller.

In the next section, we give an overview of the UTP. Section 4.2 presents the ra-
tionale for our notion of conformance and its formalisation. Section 4.3 studies
compositionality, allowing us to make system-level conclusions when we replace
a traditional controller with an ANN controller that is conformant. Section 4.4 ad-
dresses the verification of conformance using theorem proving. Related work is
covered in Section 4.5, before we conclude in Section 4.6.

4.1 UTP

Our semantic domain for ANNs is the same as that of UTP for Communicating Se-
quential Processes (CSP) [HJ98a, Chap. 8]. CSP conventionally has a denotational
semantics given by failures and divergences, a domain used to describe and anal-
yse the behaviour of concurrent systems. UTP describes this domain predicatively
and pointwise. As the name suggests, we capture two critical aspects of a pro-
cess’s behaviour: failure and divergence. We define a failure as a trace-refusal pair,
where a trace is a sequence of events a process can perform, and a refusal is a
set of events that the process can choose not to engage in after performing the
trace.

A divergence is a trace after which the process’s behaviour is undefined: anything
might happen. However, divergences are not relevant to our semantics of ANNs.
Since the process that defines an ANN is divergence free (see Chapter 3).

Hehner-style predicative semantics involves pointwise alphabetised predicates that
define various programming theories [Heh84a, Heh84b]. These theories encom-
pass sequential programs and their refinement calculus, as well as process alge-
bras like ACP, CCS, and CSP [HJ98a]. We have established UTP theories for the
following programming theories: object-orientation [CSW05, ZSCS14], probabilis-
tic programming [WCF+19, YFW21, YCF+22b, YWF23, YW24], agents [WDWF24],
and even hardware [PW08b, BFW09, PW08a, PWSI11].

Remark. To define and reason about predicates, we use the logic described by
Woodcock and Davies in Using Z [WD96b].3 The following law is useful.

one-point x not free in e⇒ (∃x • (x = e) ∧ P = P[e/x])

The one-point rule says that, providing the variable x is not free in the expression
e, we can eliminate the quantifier and replace ∃x • (x = e) ∧ P by P[e/x].

3Morgan and Sanders [MS89] have a set of useful laws of the logical calculi that is compatible
with the logic used by Woodcock and Davies [WD96b].
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We define a programming theory by its alphabet, signature, a complete lattice of
predicates, and healthiness conditions that determine theory membership [HJ98a].
The refinement relation orders the complete lattice, making it a specification-oriented
structure. A specification is just a predicate in the lattice, and its implementa-
tions are all the predicates above it in the lattice. These predicates denote pro-
grams. Monotonic and idempotent predicate operators characterise healthiness
conditions.

An example of such a theory is the theory of sequential programming [HJ98a]. Its
alphabet consists of the observation variables ok and ok′, as well as the program’s
variables. The boolean ok is the observation that the program has started, and the
matching ok′ is the observation that the program has terminated. The signature of
the theory is the syntax of the programming language, in this case, the combinators
of Dijkstra’s simple nondeterministic programming language: assignment (x := e),
conditional (P 2 b 3 Q), nondeterministic choice (P⊓Q), and recursion (P = F(P)).
We order the complete lattice of alphabetised predicates by refinement, which is
the universal inverse implication ((P ⊑ Q) = [Q ⇒ P ]), where [R ] is the universal
closure (quantification) of the predicate R over its alphabet.

Two healthiness conditions characterise the predicates that define the valid obser-
vations ok and ok′. First, we cannot observe before the program has started.

H1(P) = ok⇒ P

The fixed points of this function are the predicates that are H1-healthy.

Next, we cannot insist that a program fails to terminate. This condition is necessary
so that a terminating program can refine an aborting program: anything is better
than nontermination. We express this as the monotonicity of a predicate in its ok′

variable concerning implication as defined below by H2.

H2 : P[false/ok′] ⇒ P[true/ok′]

We express this also as a monotonic idempotent function.

H2(P) = P ; (ok⇒ ok′) ∧ II(v)

Here, we compose the relation P with one that allows the ok′ variable to stay the
same or to increasewhile the program variables stay the same: II(x) = (x′ = x).

We characterise the sequential program theory by the joint fixed points of H1 and
H2: only the H1 and H2-healthy predicates are included.

H = H1 ◦H2

The composition commutes.

Reactive Process Theory. The term reactive system was popularised by Harel
in his seminal work on Statecharts and systems theory in the 1980s. His influ-
ential paper [Har87] introduced Statecharts to model the behaviour of reactive
systems: those that maintain an ongoing interaction with their environment over
time rather than simply producing a result after a computation. A transformational
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program converts an input stream into an output stream. In contrast, a reactive
process pauses to interact with its environment and is often nonterminating.

UTP highlights the distinction between these two types of processes by interpret-
ing a pair of observations ok and wait [HJ98a]. In this theory, processes can abort,
like programs; this is now called divergence, but we treat the observations ok and
ok′ the same way. A process that is not diverging is called stable. The new ob-
servations wait and wait′ signify waiting for interaction with the environment. The
combination of the values of ok′ and wait′ describe the following behaviours:

1. ¬ wait′ ∧ ok′ stable termination

2. wait′ ∧ ok′ stable pause for interaction

3. wait′ ∧ ¬ ok′ diverging!

4. ¬ wait′ ∧ ¬ ok′ diverging!

The combination of the values of ok and wait describe similar behaviour for the
process’s predecessor concerning sequential composition. There are three health-
iness conditions, with the overall condition R = R1 ◦R2 ◦R3 characterising the valid
predicates.

R1 A process cannot undo its history.

R1(P) = P ∧ tr ≤ tr′

R2 Aprocess cannot depend on its predecessor’s history (analogous to theMarkov
property).

R2(P) = P[⟨⟩, tr′ − tr/tr, tr′]

R3 A process depends on its predecessor’s termination.4

R3(P) = II 2 wait 3 P(P 2 b 3 Q) = (b ∧ P) ∨ (¬ b ∧ Q)

These conditions are monotonic, idempotent, and commutative.

CSP and Circus processes, which are reactive imperative processes, whose al-
phabet includes programming variables, have the healthiness condition CSP =
R ◦H [HJ98a]. We note that this composition is not commutative.

4.2 Overview of conformance

In this section, we first explain a fundamental result in deep learning: the Univer-
sal Approximation Theorem and its generalisations (Section 4.2.1). We give some
intuition to explain why it applies to approximate ANNs (Section 4.2.2) and its re-
strictions (Section 4.2.3). Finally, we offer informal explanations of refinement and
conformance (Section 4.2.4), and formalise conformance (Section 4.2.5).

4The relation P 2 b 3 Q behaves like P if b is true and Q otherwise.
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4.2.1 Universal Approximation Theorem

The originalUniversal Approximation Theorem, reproduced below, is due to George
Cybenko [Cyb89]; it was published in 1989. His formulation applies only to feed-
forward ANNs with a single hidden layer and finite neurons.

Theorem 1 (Universal Approximation). A neural network can approximate any con-
tinuous function on a compact subset of Rn,5 given sufficient parameters (weights
and biases). For any small ϵ > 0, there exists a neural network configuration such
that, for all inputs within the domain, the difference between the network’s output
and the target function is less than ϵ.

A consequence of the Universal Approximation Theorem is that neural networks
can model any data or function, regardless of its complexity.6 This result underpins
neural networks’ flexibility and power, making them a universal tool for approxima-
tion tasks in various domains, such as regression and classification, and even more
complex tasks, such as image recognition and natural language processing.7

The theorem specifies that, when considering continuous functions over compact
subsets of Rn, an ANN can approximate the target function to any desired degree
of accuracy. The activation function used in the network is non-constant, bounded,
and continuous, examples of which include sigmoid (σ), tanh, and ReLU. However,
the theorem does not specify the number of neurons required, how to find the
optimal weights and biases, or guarantee the efficiency of the approximation.

The sigmoid function, also known as the logistic function, takes any real value as
input and outputs a value between 0 and 1. It is S-shaped; we usually denote it as
σ(x). We use the sigmoid function in models that predict probabilities. The sigmoid
function is defined as σ(x) = 1/(1 + e−x). The hyperbolic tangent function, tanh, is
similar to sigmoid but has an output range of −1 to +1. It is also S-shaped and
is often preferred over sigmoid because its outputs are zero-centred. The tanh
function is used to classify two classes. It is defined as tanh(x) = (ex − e−x)/(ex +
e−x).

The Rectified Linear Unit, ReLU [GBB11], is half-rectified and ranges from 0 to ∞.
It has a linear, non-saturating property and is used particularly in convolutional
ANNs and deep learning. It is defined as ReLU(x) = max(x, 0). ReLU can acceler-
ate the convergence of gradient descent by maintaining strong, stable gradients
(mitigating the vanishing gradient problem), promoting sparse activations (which
enhances computational efficiency and generalisation), and avoiding the complex-
ity of other activation functions. This combination of benefits enables deep net-
works to learn more effectively and efficiently, resulting in faster convergence dur-
ing training.

5A compact subset of Rn within the n-dimensional real space has two important properties:
closed and bounded.

6The Universal Approximation Theorem is a fundamental result in the theory of ANNs. While
we typically prove it using traditional mathematical methods, there have been efforts to formalise
and prove aspects of such theorems using mechanical theorem provers. However, we know of no
complete mechanical proof of Cybenko’s theorem.

7See Goodfellow et al. for a foundational understanding of ANNs and their applications in com-
puter vision, natural language processing, reinforcement learning, and generative models [GBC16].
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On the other hand, this may also kill some neurons in the network. This phe-
nomenon is known as the dying ReLU problem, which can occur when the weighted
sum of neurons becomes negative during training. When this happens, the ReLU
permanently sets those neurons to be inactive, which can reduce the model’s ca-
pacity. In more detail, some neurons can only output zero for any input during
training, especially with large learning rates or poor initialisation. Once a neuron
outputs zero, the gradient for that neuron also becomes zero (because the deriva-
tive of ReLU is zero for negative input values). If a neuron outputs only zeros, its
weights stop updating because the gradient is zero.

This behaviour means that these neurons essentially “die” and no longer contribute
to learning or to the overall function the ANN is approximating. Once a neuron
enters this state, it remains inactive for the remainder of the training process, re-
sulting in a significant portion of the network becoming unresponsive and reducing
model capacity and performance. Xu et al. define and empirically evaluate various
ReLU-based activations, including Leaky ReLU and Parametric ReLU (PReLU), and
discuss how these modifications help alleviate the dying ReLU problem in convo-
lutional neural networks [XWCL15].

The ReLU activation function is called rectified because it transforms the input to
remove or rectify negative values. Inmathematics, rectification refers to converting
all negative values of a function to zero while leaving positive values unchanged.
We call it linear because, for positive input values, the function’s output is directly
proportional to the input. In this region, it is the identity, which is a linear func-
tion. Hence, the term Rectified Linear Unit captures both its linear characteristic
for positive inputs and its rectifying nature for negative inputs.

ReLU is described as non-saturating because it does not have a ceiling or asymp-
tote that limits the output value as the input increases. This characteristic is impor-
tant in how activation functions influence the learning process in ANNs.

4.2.2 Intuition for the Approximation

Each neuron in a hidden layer applies a non-linear transformation to its input, en-
abling the ANN to create increasingly complex functions by stacking these trans-
formations. This piecewise nature allows ANNs to break down complex functions
into simpler, locally accurate segments. While locally accurate pieces are essential
for building the overall function, the global accuracy of the function depends on
how well these pieces are combined. Factors such as network capacity, overfit-
ting, smooth transitions, data coverage, and the effectiveness of the training pro-
cess all play crucial roles in determining whether the combination of locally accu-
rate pieces yields a globally precise function. Proper network design, sufficient and
well-distributed training data, and practical training techniques are crucial.

By modelling these segments individually and then combining them, the ANN can
create a flexible and powerful approximation of the overall function. Without non-
linearity, the ANNwouldmerely calculate a linear combination of its inputs, severely
limiting its expressive power. By adjusting the weights and biases, the ANN shapes
the output of each neuron to fit different parts of the target function, which we
then combine across its entire domain. Adding more layers builds on these ap-
proximations, refining the ANN’s function representation. Each layer captures dif-
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ferent aspects or features, and deeper layers refine and combine these features to
achieve a more and more accurate approximation.

ANNs learn by adapting their weights and biases during training, allowing them to
fit various functions. This process minimises the error between the ANN’s output
and target values. ANNs have finite capacity, and the limited number of parameters
restricts their ability to represent complex functions exactly. An infinite number of
parameters, infinite width (neurons per layer), or infinite depth (number of hidden
layers) might be required to represent these functions. Therefore, practical imple-
mentations rely on finite resources, resulting in approximations.

ANNs learn from a finite set of training data, and the quality, quantity, and rep-
resentativeness of this data limit the ANN’s ability to generalise to unseen data.
Training an ANN involves solving a complex optimisation problem, often using al-
gorithms like gradient descent. These algorithms may only sometimes find the
global minimum of the loss function, resulting in an approximation rather than an
exact solution.

In addition, real-world data often contains noise and uncertainty [Woo23]. We
design ANNs to model the underlying patterns in the data rather than fitting the
noise perfectly. As a result, the network produces a smoothed approximation that
generalises well to new data, but does not precisely match every data point.

4.2.3 Restrictions on the Universal Approximation Theorem

Cybenko’s original Universal Approximation Theorem [Cyb89] established that a
feed-forward neural network with a single hidden layer and a non-linear activation
function (like the sigmoid function) can approximate any continuous function on a
compact subset of Rn to any desired level of accuracy, given a sufficient number of
neurons in the hidden layer. Despite its simple structure, a single hidden layer in a
neural network can still provide robust approximations. However, more generalised
theorems apply to bounded or arbitrary-width and depth networks. Other re-
searchers have developed these generalisations and extensions of Cybenko’s the-
orem to accommodate different network architectures, activation functions, and
types of functions.8 Here are some of the critical generalisations.

Different Activation Functions Later work showed that the Universal Approxima-
tion Theorem holds for activation functions other than sigmoid, such as ReLU
and other piecewise linear functions. This extension is significant because
many practitioners use ReLU in modern deep learning due to its computa-
tional efficiency and effectiveness in training deep networks.

Deep Networks (Multiple Hidden Layers) While Cybenko’s theorem applies to sin-
gle-hidden-layer networks, generalisations of the theorem show that deep
neural networks (with multiple hidden layers) can also serve as universal ap-
proximators. Deep networks can often achieve the same level of approxima-
tion with fewer neurons than shallow networks, due to their ability to capture
hierarchical structures in data. Researchers have demonstrated that deep net-
works can approximate certain functions more efficiently (that is, with fewer

8See Augustine for a survey of Universal Approximation Theorems [Aug24].
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neurons or parameters) than shallow networks. This efficiency becomes cru-
cial as the complexity of the target function increases.

Approximation of Non-Continuous Functions While the original theorem focused
on continuous functions, extensions have been made to cover the approxima-
tion of non-continuous functions. For example, researchers have shown ANNs
to approximate measurable functions (integrable, despite discontinuities) un-
der certain conditions. Some extensions focus on functions that are contin-
uous and have bounded derivatives (Lipschitz continuous functions). These
results often require more in-depth analysis and specialised techniques.

Function Spaces The original theorem applies to continuous functions on a com-
pact subset, but generalisations extend the results to function spaces like Lp

spaces, which include functions that may not be continuous but are integrable
to the p-th power. These spaces are essential in many areas of functional anal-
ysis and applied mathematics. Further generalisations extend the theorem to
Sobolev spaces, which include functions with derivatives up to a particular
order that are square-integrable. We use these spaces to study partial differ-
ential equations and other advanced topics.

Probabilistic Approximation Some generalisations consider the approximation of
functions in a probabilistic sense. For example, instead of requiring the ANN
to approximate a function uniformly across the input space, these versions
might need the ANN to approximate the function well on average or with
high probability over a distribution of inputs.

Convolutional Neural Networks (CNNs) Recent generalisations consider specific
ANN architectures, such as CNNs, which are particularly effective for process-
ing structured data like images. Researchers have demonstrated that CNNs
with specific architectures can also serve as universal approximators, partic-
ularly for functions that exhibit spatial hierarchies or translational invariance.

Residual Networks and Other Architectures (ResNets) There are generalisations
considering architectures like residual networks, where the ANN can approx-
imate identity mappings easily. This helps train deep networks and enhance
universal approximation capabilities in practical scenarios. Generalisations
also extend to Recurrent Neural Networks (RNNs), suitable for sequential
data. Under certain conditions, RNNs approximate functions over sequences.

Representation Power of Deep Networks Modern generalisations explore the rep-
resentation power of deep networks, focusing on how the depth of an ANN in-
fluences its approximation capabilities. These studies often explore the trade-
off between depth, width, and the complexity of the approximated function.

Summary These generalisations expand the scope of the original Universal Ap-
proximation Theorem, accommodating a wider variety of activation functions, net-
work architectures, and function spaces. They provide a deeper understanding of
why ANNs are so powerful in practice and offer theoretical assurances for their ap-
plication across many different problems. For us, this establishes the unavoidable
need to accept and deal with approximations when using an ANN.

Next, we explore the impact of approximation on verification.
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4.2.4 Refinement and conformance

Programmers progress through stages of development, including specification, de-
sign, and implementation in code, whichmay involve the use of anANN. Refinement
is the process of establishing a correct relation between the artefacts produced or
generated by calculation at these stages. Cavalcanti et al. provide an overview
of refinement methods [CSW04]. Morgan provides a refinement calculus for se-
quential programs [Mor94]; see also Woodcock’s tutorials [Woo91b, Woo91a]. A
program Q refines a program P (P ⊑ Q) if Q is more detailed than P while still sat-
isfying the properties of P. Every execution of Q corresponds to some execution
of P.

At different abstraction levels, P represents an abstract specification, while Q is
a more concrete implementation. Behavioural consistency requires that Q’s be-
haviour aligns formally with P’s. Refinement is typically used in program develop-
ment to transform specifications into executable code while preserving correct-
ness. As the abstraction levels change, the properties are preserved: every be-
haviour of the refined program is consistent with what the specification allows.

The related notion of conformance that we define here is a less stringent require-
ment than refinement. An implementation is considered conformant if it closely
approximates the specification. We formalise it in the next section.

4.2.5 Formalisation of conformance

Value Approximation We begin our formal account of conformance by defin-
ing the simple concept of one value approximating another within a specified tol-
erance. The fundamental idea is that value approximation is defined using inter-
vals.

Definition 4.1 (Value Approximation). We approximate x within ϵ as

approx(ϵ)(x) =̂ [x− ϵ, x+ ϵ] provided ϵ ≥ 0

The proviso avoids an empty interval, which does not usually present problems.

Sequence Approximation Next, we extend value approximation to sequence ap-
proximation. Our motivation for this is to describe how one process trace approx-
imates another, thereby defining approximation for processes.

Definition 4.2 (Sequence Pointwise Approximation). We lift value approximation
pointwise to sequences:

seq approx(ϵ)(xs) = {ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ϵ)(xs(i))) }

Process Approximation Wehave lifted value approximation to sequence approx-
imation to account for approximate traces. Now, we lift sequence approximation
to process approximation, leading to the definition of conformance later.

To show thatQ conformswithin ϵ to P, we characterise all acceptable ϵ-approximate
behaviours of P. We then require Q to have one or more of these approximate be-
haviours. The function Approx(ϵ) defines all the required behaviours.
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Definition 4.3 (Process Approximation).

Approx(ϵ)(P) =̂ var t := tr • P+t ; upd tr(ϵ)

upd tr(ϵ) =̂ tr :∈ { s : seq approx(ϵ)(tr− t) • t⌢ s }

where t is a fresh variable.

We refer to this definition as a simulation.9 The definition starts with a variable
block var t := tr • · · · introducing a new variable t (which must not be free in
P). This variable records the value of tr before P is executed (t := tr). Next, we
execute Pwith its list of programming variables augmented by t, unaffected by the
execution of P: (P+t). Finally, the relation upd tr(ϵ) updates the trace.

The auxiliary definition of upd tr(ϵ) uses the set { s : seq approx(ϵ)(tr − t) • t ⌢ s }.
Here, tr is the trace produced by P, and t is the value of tr recorded before P’s
execution. So tr− t is the contribution to the trace made by the process P. The set
comprehension defines all possible traces t⌢s where this portion is replaced by an
ϵ-approximation s. Finally, tr is assigned the value of one of these approximations
(tr :∈ · · · ). So, Approx(ϵ)(P) describes all the acceptable approximations of P.

We note here that, for simplicity of notation, we are regarding traces as sequences
of real values. It is a simple exercise to define a similar function that considers
traces of events that convey values, as well as traces with some events that may
convey real values and are subject to approximation.

Conformance We now have all the mathematical machinery to define confor-
mance.

Definition 4.4 (Conformance).

Q conf(ϵ) P =̂ Approx(ϵ)(P) ⊑ Q

This says that Q conforms to P, within the tolerance ϵ, if, and only if, Q is an ϵ-
approximations of P as defined by Approx.

Appendix C provides extensive results about the above definitions. In the next
section, we examine the impact of replacing a component P of a process R with
another component Q that is conformant to P to obtain a new process S. Ideally,
we would like for R to conform to S, but it is not so direct.

4.3 Compositionality

As proof of principle, our key result at present is the monotonicity of internal choice
regarding conformance. If two implementations R and S each conform approxi-
mately (within ε ) to specifications P and Q respectively, then a system that nonde-
terministically chooses between R and S also conforms (within ε ) to a specification
that nondeterministically chooses between P and Q .

9We adopt the terminology from UTP’s separating simulations [HJ98a, Chap. 7], where Hoare
and He utilise it in the definition of their parallel-by-merge operator.
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Theorem 2 (Conformance theory:- conformance internal choice monotonicity).

(R conf(ε) P) ∧ (S conf(ε) Q) ⇒ (R ⊓ S conf(ε) P ⊓Q)

Why does this matter? It ensures that approximate correctness is preserved under
nondeterministic composition. In reactive or neural systems, R and S might rep-
resent different learned controllers or operational modes. The specification allows
the system to behave either as P or Q. This theorem tells us that as long as each
controller conforms individually, the overall controller (which switches between
them nondeterministically) still conforms—within the same ε bound.

Why is it sound? The logic behind this is that conformance is defined pointwise.
If all behaviours of R are ε-approximated by P, and similarly for S and Q, then any
behaviour of R⊓S is a behaviour of either R or S. So it must be ε-approximated by
some behaviour of either P or Q, which are the behaviours of P ⊓Q.

What is the practical relevance of this theorem? Suppose each of the two im-
plementation processes conforms approximately (within the same tolerance ε) to
its respective specification. In that case, their nondeterministic combination also
conforms—under the same ε bound—to the nondeterministic combination of the
specifications.

In practice, it means that we can verify components of a system in isolation and then
soundly infer the approximate correctness of a nondeterministic combination of
those components. The result is particularly relevant when modelling systems that
include mode switches, failovers, or learned behaviours from multiple networks. It
guarantees that combining approximate implementations cannot lead to an overall
violation of the specification, as long as each branch is itself conformant to the
specification.

In the context of RoboChart semantics, nondeterminism in the model is captured
using nondeterministic choice. If it involves an ANN controller, then conformance
of the ANN controller implies conformance of the nondeterministic choice as a
whole. Similar results are needed for the other Circus operators.

Aweaker result would be to let the two bounds be different. This would perhaps im-
ply that the nondeterministic choice conforms to the maximum of the two bounds.
Moreover, our current treatment of conformance is based on the traces model,
where the semantics of external choice are the same as those of internal choice;
therefore, external choice must also be conformant-monotonic. Our theory pro-
vides a principled basis for expressing and reasoning about bounded variation in
ANN behaviour.

Our next step is to explore the monotonicity of other CSP operators in terms of
conformance. Our experience enables us to predict the likely outcomes. Prefix-
ing seems unproblematic. Sequential composition is expected to be conformant-
monotonic in state-free CSP. However, the addition of a state means that a process
can depend on its predecessor. This allows the aggregation of tolerances over se-
quential composition, just like in the pseudo-transitivity property of Approx.

Parallel composition is unlikely to be monotonic, because even slight differences
between an implementation and its specification can be magnified when synchro-
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nisation is required: one side may refuse to proceed where the other can. As a
result, a process that approximately matches its specification on its own may fail
to do so when placed in a shared unrestricted context.

Hiding may break conformance because it removes observable actions that are
crucial for measuring how closely an implementation matches its specification. By
turning visible events into internal ones, hiding may erase distinguishing behaviour
or introduce ambiguity, disrupting the trace-based comparison that conformance
relies on.

With semantic restrictions (such as determinism and divergence freedom) and
structural adjustments (like abstraction-aware conformance), it may be possible to
recover monotonicity. These adjustments may make conformance a congruence,
and thus better suited for compositional reasoning.

4.4 Proof

In this section, we describe how theorem proving can be used to prove confor-
mance. This paves the way for automation via tactics in the Isabelle/UTP theorem
prover for the UTP and Marabou. Specifically, we identify verification conditions
sufficient to establish conformance that can be discharged using Isabelle or SMT-
based tools, such as Marabou, in conjunction with Isabelle.

We use here UTP reactive contracts: a triple consisting of a precondition (P1), a
pericondition (P2), and a postcondition (P3), as shown below.[

P1(tt, s)
∣∣P2(tt, s, ref′)⊢P3(tt, s, s′)

]
The precondition is a predicate over the trace variable (tt) and the initial state
variable (s), which characterises the non-divergent behaviours. The pericondition
ranges over tt, s and the refusal set (ref′), characterising behaviours where the
process awaits interaction. Finally, the postcondition ranges over tt, s, and the final
state (s′), characterising terminating behaviours.

For specifications of ANNs, we consider cyclic, memoryless RoboChart controllers,
which process all inputs before generating any outputs and then repeat, with no
memory between cycles. We denote these controllers with StandardController.
The semantics of such a controller, as a reactive contract, follows a pattern that
captures the relationship between input and output communications using a pred-
icate p that ranges over the trace. Equally, our semantics for an ANN defined by
Rule 2 can be captured as a reactive contract of a particular pattern. We describe
the patterns and how we obtain contracts instantiating them in [ACW23].

Both the specification and ANN patterns follow tail recursions. Thus, the compo-
sitionality of conformance enables us to focus on verifying that a single iteration
of the ANN conforms to a single interaction of the cyclic controller. Definition 4.4
captures the pattern for a single iteration of an ANN.
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definition[ANN Reactive Contract Pattern]

[ true

⊢ # in < insize ∧ tt = in ∧ {| layerRes.0.(# in+ 1) |} ̸⊆ ref′

∨

# in = insize ∧

∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

tt = front(layeroutput(l,n, in)) ∧

last(layeroutput(l,n, in)) ̸∈ ref′

| # in = insize ∧ tt = layeroutput(layerNo, layerSize(layerNo), in) ]

An instance of this pattern above, for the parallelism between HiddenLayers and
OutputLayer (see Rule 2), is a reactive contract L that has a true precondition, indi-
cating that the ANN cannot diverge. The pericondition of L is a predicate specify-
ing that, in an intermediate state, the trace of events observed so far includes only
layerRes.0.n events (denoted by in here), without repeated values for n, and that
layerRes.0.m events that have not been observed are not refused. Alternatively, the
trace can include layerRes.0.n events, for all values of n, followed by layerRes.m.n
events, for unique values of m and n, but covering all but one layerRes.layerNo
event. The postcondition states that the last output is added to the trace, and the
action terminates. We use an instance of this pattern to define ANNController: the
semantics of an ANN component as specified in the previous chapter. We specify
the traces that include events other than inputs (layerRes.0 events) using a function
layeroutput. With layeroutput(l,n, in), we get the trace up to the point where the
n-th node of the layer l has produced its output, with input in. Here, in is a trace of
input events, and l and n are natural numbers.

The definition of layeroutput(l,n, in) uses a function annout(l,n, inv), which specifies
the value communicated by the n-th node of the layer; here, inv is the sequence
of values of the inputs defined in the trace in. We can automatically extract the
definition of this function from our process-algebraic semantics.

Next, we present a theorem that establishes verification conditions that can be
discharged to prove conformance and avoid proof from first principles.

Theorem 3 (Verification condition for conformance).

(∀x1, . ., xinsize : Value • ∀y1, . ., youtsize : Value | p • ∀ i : 1 . . outsize •
| denormO(i,annout(layerNo, i, inpv))− yi | ≤ ϵ)

⇒ ANNController conf(ϵ) StandardController

where ANNController and StandardController are instances of the patterns for re-
active contracts for ANN controllers and cyclic memoryless controllers; the se-
quence of input values inpv is given by ⟨normI(1,x1), . .,normI(insize,xinsize)⟩; and
the predicate p is the part of the pericondition and postcondition of the instance
StandardController that relates its inputs to its outputs.
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The verification condition identified by Theorem 3 requires that for all sequences
of inputs and all sequences of outputs, whose values xj and yi are related by a
predicate p arising from the StandardController specification, the outputs of the
ANNmust be acceptable. For example, p for the RoboChart Controller AnglePID is
a function y1 = P∗x1+D∗x2. Precisely, acceptability requires that for each i indexing
an output yi, the output of the ANN does not differ from yi by more than ϵ. The
i-th output of the ANN is defined by denormO(i,annout(layerNo, i, inpv)), in terms
of annout. Here, inpv is the sequence of input values obtained by the normalisation
of each input xi, that is, ⟨normI(1,x1), . .,normI(insize, xinsize)⟩.

For improved automation of verification of RoboChart models, we provide a fur-
ther result that can justify the combined use of IsaCircus and Marabou. This is
possible when the domain of each input is already bounded, and the predicate p
from Theorem 3 defines a monotonic function F on sequences of input and output
communications. We can then use the verification condition in Theorem 4.

The input to Marabou needs to define a split of the domain of all possible input
values. A split is characterised by a constant noInt, representing the number of
closed intervals into which the range of every input value xi is divided. The smaller
the value of ϵ, the larger the value of noInt required. For each of the noInt intervals
inti in a split, we need to provide to Marabou its lower bound inti.min and its upper
bound inti.max. A valid split needs to satisfy the restriction that, for every value v
of every input xj, there is an interval inti such that inti.min ≤ v ≤ inti.max.

Since the ANN is normalised to the range of our StandardController, we can prove
conformance in Marabou with the verification condition below.

Theorem 4 (Verification condition for Marabou).

¬ ∃ x1, . .xinsize : Value • ∃y1, . .youtsize : Value •

⟨int1.min, ..., int(noInt).min⟩ F ⟨y1, . .youtsize⟩ ∧

∃y′1, . .y′outsize : Value •

⟨int1.max, ..., int(noInt).max⟩ F ⟨y′1, . .y′outsize⟩ ∧

∃ i : 1 . . outsize •

annout(layerNo, i, ⟨x1, . .xinsize⟩) ≤ y′i − ϵ ∨

annout(layerNo, i, ⟨x1, . .xinsize⟩) ≥ yi + ϵ
⇒ ANNController conf(ϵ) StandardController

Theorem 4 states that, given that all intervals are valid, there does not exist an
input valuation (xi) such that either of the following conditions holds. First, annout
is less than or equal to F evaluated at the maximum point of the interval (y′i) under
ϵ. Second, annout is greater than F at the minimum point of the interval (yi) with ϵ
applied. In this case, annoutputmust be within F under all possible values of x.

One query in Marabou encodes this verification condition for every interval inti.
If Marabou returns UNSAT for every condition, we can use the value of ϵ in Is-
abelle soundly for conformance, via a certificate that can be automatically obtained
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through Marabou [IBZK22]. Such certificates can be reconstructed using CVC4
and CVC5 in Isabelle [LFA+24]; this would constitute progress towards integrating
Marabou with Isabelle via Sledgehammer [BKPU16].

By applying Theorem 4 to our example withAnglePID andAnglePIDANN, we obtain
a verification condition of the form described below.

¬ ∃ x1,x2 : Value •

∀ i : 1 . . 2 •

inti.min ≤ xi ≤ inti.max ∧

y1 ≥ (P ∗ (inti.min) +D ∗ (inti.min) + ϵ) ∨

y1 ≤ (P ∗ (inti.max) +D ∗ (inti.max)− ϵ)

When we instantiate the constants in the conditions above, we obtain an ϵ error
value of 0.085. We use the range {0..1} as Value, given our normalisation assumption.
We have also instantiated F as a function capturing the behaviour of AnglePID in
terms of the constants P and D. Finally, noInt is set to 100. In this way, as a proof
of principle, we have used Marabou and Isabelle to verify the ANN component
AnglePIDANN against the standard controller AnglePID.

4.5 Related work

The verification of ANNs is a popular and increasingly researched topic in the liter-
ature [ZWL+24], but the challenges involved vary depending on the type of verifi-
cation considered. Here, we address system-level verification.

When considering the verification of an ANN model in isolation, its functional be-
haviour can be captured using a composition of functions with n real input variables
andm real output variables. This formalism enables multiple mathematical analysis
techniques, such as transformations upon geometric objects, linear algebraic rea-
soning, and abstract interpretation analysis. However, these functions capturing an
ANN are non-convex and non-linear due to the nature of the activation functions, so
verifying properties forms an NP-Complete computational problem [K+19]. There-
fore, using SMT solvers without dedicated support for such networks is intractable
for even small ANNs. There are variations in the style of properties these solvers
accept, but in general they establish a reachability condition, which is a predicate
over the input and output vector spaces of an ANN function.

When we consider what verification looks like for software systems involving ANN
components, however, we face a different problem. First, engineering with impre-
cise components from a formal analysis perspective is challenging. The impact that
an imprecise component has on the behaviour of the software, and on refinement
and compositional reasoning is a research challenge. Furthermore, identifying the
contexts in which we can accept such imprecision and proving that this imprecision
does not cause unintended consequences for an arbitrary system is another key
challenge. Finally, when considering a software component that implements the
model of an ANN, its behaviour cannot be accurately captured by just a functional

60



D1.1 - RoboSAPIENS: RoboArch, RoboChart, and UQ (Public Document)

model. To model and reason about the behaviour of this software component, we
need to prove the reactive properties of this component.

At the component level, another challenge is the need for ANN-specific verifica-
tion techniques. We can capture software implementing an ANN as a process to
prove its structural and reactive properties. This model, however, is not adequate
to establish properties about the ANNs behaviour, as discussed earlier. A challenge
is relating properties of systems to properties of ANN functions, to effectively use
these solvers to prove high-level properties about this component in context.

In the literature currently, verification of AI-enabled systems using hybrid automata
is the dominant approach [LCTJ23, IJH+21, ZWL+24, SKS19]. It is suitable for mod-
elling equations that capture real phenomena, as it focuses on state transitions
captured using differential equations and can model physical phenomena and the
transitions between states through events. In a hybrid automata, events are transi-
tions between states, labelled optionally to enable parallelism with other automata.
This means that the properties of the interaction and communication between
these events are very challenging, or impossible, to establish tractably with this
approach.

Some authors have attempted to add this level of reasoning to the hybrid automata
model [LSV03]. These are much more complex and require a significant amount
of work to reorient the model to establish these properties, and especially to im-
plement and create tools for the automated use of these models.

The neural network verification software tool (NNV) 10 appears to be the system-
level ANN tool with the most support and features. It supports neural ordinary
differential equations, semantic segmentation networks, and recurrent neural net-
works [LCTJ23]. Also, it supports systems involving ANNs specified as hybrid au-
tomata, including automated reasoning facilities to support this analysis. Its tooling
supports multiple file formats, many more types of neural networks that we sup-
port, and is based in Matlab. Its analysis for system-level properties is based on
reachability analysis. The primary difference to our work is the representation of
ANNs as functions, and systems as captured using hybrid automata, which changes
the types of system-level properties that can be established.

The work in [ZWL+24] proposes an approach to unifying qualitative and quanti-
tative methods to ANN system verification [SSS22]. The approach synthesises a
barrier function on a hybrid systemwith multiple ANN components. The intuition is
that, given a set of safe states, a barrier condition is used to prove that the system
can reach no unsafe state, or obtain an upper and lower bound on the probability
of doing so. This approach enables probabilistic analysis, analysis of multiple large
ANN component models, and timed reasoning. It shares the same drawbacks dis-
cussed about hybrid system analysis and functional abstractions.

BehaVerify is a tool for verifying behavioural trees [SJ22]. Its approach uses a be-
havioural tree defined in Python, and records information about the tree depending
on the type of encoding. This work is related to ours because its profile of a be-
havioural tree is similar to a network of interacting processes. This formalism is
more expressive than ours, as it captures node memory and blackboard variables

10github.com/verivital/nnv
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(shared state), making it significantly more challenging to relate these models to
ANN tools. Also, the work considers specifications defined in LTL.

In [BS23], the authors use Isabelle/HOL to formalise concepts common to ANN
models. This is the only work we are aware of that utilises Isabelle for ANN veri-
fication, similar to our approach. The models from [BS23] are platform indepen-
dent, and can be used to verify properties over the input and output of an ANN
using Isabelle’s theories for real arithmetic. The authors define two encodings of
an ANN: the ’textbook’ style, as graphs, and the layer style, capturing Tensorflow
layers. This work has close links to practical file formats: it can support the au-
tomated interpretation of a network trained in Tensorflow, and can potentially be
used to establish correctness and sound transformations of one file format to an-
other, proving semantic correspondence between the networks. Their work also
supports a broader range of activation functions and layer types. Unlike our work,
however, they do not consider a formal model capturing a system, and are con-
cerned with ANNs in isolation.

Showing that an ANN approximates a logical property is an exciting area that
bridges formal logic, approximation theory, and machine learning. This work is
crucial for understanding capabilities and limitations of ANNs in representing log-
ical structures. We provide an overview of some key developments in this area
below.

Habeeb and Prabhakar discuss approximate conformance of ANNs [PP24]. They
explore a method for verifying that two ANNs behave approximately the same
when given the same inputs. The key concept is ϵ-conformance, which allows for
slight differences in output, controlled by the parameter ϵ. Given two ANNs N1 and
N2 with the same input/output structure, the goal is to check if their outputs differ
by no more than ϵ for any input within a given range. Like we do, they note that
exact conformance (ϵ = 0) is too strict, and so use approximate conformance.

Existing verification methods, such as ReluDiff and StarDiff, either work only with
very similar ANNs or are computationally expensive. So in [PP24] the authors pro-
pose a more efficient method by transforming the conformance-checking problem
into a reachability analysis problem. The technique transforms the two ANNs into
a single network N that simulates the joint behaviour of both ANNs. Analysing
the reachability of this combined ANN determines conformance. This technique
checks the reachable set of outputs for given inputs and determines whether the
output difference between N1 and N2 remains within ϵ.

The authors use Python to evaluate conformance and apply various ANN verifi-
cation tools (for example, nnenum and α-β-CROWN). They experimented on 27
network pairs from the ACAS Xu benchmark, including ANNs for aircraft-collision
avoidance. The authors present evidence that the proposed method is faster and
more reliable than existing approaches. They can verify conformance or detect
violations for more ANN pairs in less time using reachability tools. They test the
method in a real-world scenario: an automatic rocket landing system. They analyse
the effects of replacing a controller ANN with an ϵ-conformant one in a closed-loop
system and observe that the deviation between system states increases over time
due to the accumulation of input-output deviations. Their method for approximate
conformance verification shows promise, outperforming traditional approaches.
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The authors suggest that future work could focus on extending conformance ver-
ification methods to more complex closed-loop systems.

Next, we discuss more general approaches.

Neural-Symbolic Integration This field combines ANNswith logical reasoning sys-
tems. Besold et al. survey work in neural-symbolic learning, reasoning, and
approaches to integrating ANNs with symbolic AI systems [BdGB+17].

Logic Tensor Networks LTNs provide a framework for integrating logical reason-
ing with deep learning. This framework shows how logical formulas and data
are combined into tensor representations, processed through an ANN, and
evaluated using fuzzy logic. The system then optimises its weights based on
this evaluation. We refer to Serafini and Garcez’s work on LTNs, deep learning,
and logical reasoning from data and knowledge [SdG16].

Approximating Logical Formulas Research has been done on how well ANNs can
approximate specific types of logical formulas. We refer to Lee et al. for a
discussion of the expressiveness of ANNs [LGM+17].

Rule Extraction from ANNs This involves deriving logical rules that approximate
the behaviour of ANNs. The review by Hailesilassie on rule extraction algo-
rithms for ANNs [Hai16] provides an overview.

Neurosymbolic AI This approach combines ANNs with symbolic reasoning to ap-
proximate logical properties. Garcia and Lamb discuss neurosymbolic AI and
how combining neural and symbolic approaches can lead to better approxi-
mations of logical properties [GL23].

Probabilistic Logic Networks These networks represent and reason with uncer-
tain logical knowledge. Qu and Tang propose a framework for reasoning with
uncertain logical knowledge using ANNs [QT19].

Fuzzy Neural Networks These networks incorporate fuzzy logic into ANN archi-
tectures to better approximate logical properties with degrees of truth. Ras
et al. provide a comprehensive overview of the work in this area [DSM20].

These approaches often face challenges in scalability, interpretability, and handling
complex logical structures. Current research focuses on improving the fidelity of
logical approximations, handling more complex logical systems, and developing
more efficient training and verification methods.

4.6 Final considerations

In this chapter, we have introduced and explored the concept of conformance for
ANNs, drawing inspiration from established formal methods and theories such as
the UTP. We have presented conformance as a refinement-like relationship where
an ANN N conforms to a specification S if N is a refinement of the ϵ-approximation
of S. With this approach, we can verify that the refined or implemented ANN ad-
heres to the specified properties within a given margin of error.

The application of conformance to ANNs addresses the challenges posed by their
inherent approximation, ensuring that the ANN’s behaviour aligns closely with its
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intended specification. Through the use of ϵ-approximations, we can verify ANNs
even when exact conformity is computationally infeasible, thus making it possible
to establish rigorous correctness properties in practical implementations.
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5 Uncertainty identification and quantification

5.1 Introduction

This chapter presents our work on uncertainty identification and quantification in
robotics systems and their environments. Uncertainty is a fundamental challenge in
robotics, arising from sensor noise, environmental variability, model inaccuracies,
and dynamic interactions with environment elements. Addressing these uncer-
tainties is essential for improving the reliability, adaptability, and decision-making
capabilities of robotic systems operating in real-world conditions.

In this chapter, uncertainty identification refers to the process of recognising and
categorising uncertainties arising from various sources. Identifying uncertainty
in self-adaptive robotics is challenging due to the inherent complexity of these
robots, including their complex interactions, evolving configurations, and adaptive
behaviours, as well as the lack of comprehensive knowledge about unpredictable
operational contexts and environmental dynamics. As a result, practitioners often
rely on their intuition and insights from previous experienceswith similar systems to
identify and manage uncertainties in self-adaptive robotics. Considering this chal-
lenge, our objective is to develop systematic and automated methods for identify-
ing uncertainty in self-adaptive robots. Furthermore, we aim to develop a compre-
hensive taxonomy of uncertainties by analysing existing literature and gathering
perspectives from industry practitioners, which will ultimately lay the groundwork
for advancing uncertainty quantification techniques.

Following the identification process, uncertainty quantification aims to measure
and represent the degree of uncertainty in a mathematically rigorous manner, and
we are specifically interested in quantifying uncertainty in DL models employed in
robotic systems. DL has become a key component in modern robotics, enabling
perception, decision-making, and control in complex and dynamic environments.
However, these models often operate in uncertain conditions where sensor noise,
partial observability, and data distribution shifts can significantly impact their per-
formance. Accurately quantifying uncertainty in deep learning models is there-
fore crucial for improving the reliability and robustness of robotic decision-making.
Various methods are employed for this purpose, including Bayesian deep learn-
ing [TDVDWH19], which incorporates probabilistic reasoning into neural networks,
Monte Carlo Dropout (MC-Dropout) [GG16], which approximates Bayesian infer-
ence through stochastic sampling, and deep ensembling [LPB17], which leverages
multiple model predictions to estimate uncertainty. These techniques allow for
more informed decision-making by providing uncertainty-aware estimates that en-
hance the robustness and safety of robotic systems.

In the following sections, we first present our work on uncertainty identification in
Section 5.2. We then introduce our work on DL uncertainty quantification based
on MC-Dropout in Section 5.3.

5.2 Uncertainty identification

Self-adaptive robots are expected to operate in highly dynamic environments while
effectively managing uncertainties. A fundamental challenge in such robots is man-
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aging uncertainty throughout their entire engineering lifecycle, from initial design
to active operations [WCM+23b]. Uncertainty can arise from various sources, such
as unpredictable environmental conditions, sensor and actuator noise, and human-
robot and robot-robot interactions. Such factors directly influence the dependabil-
ity of a robot, ultimately impacting its overall performance and decision-making ca-
pabilities. Therefore, an important concern is to identify the sources and potential
impacts of uncertainties at early stages of the robotics software engineering lifecy-
cle [WCM+23b]. Identifying uncertainty in self-adaptive robots is challenging due
to their inherent complexity, including their complex interactions, evolving config-
urations, and adaptive behaviours, as well as a lack of comprehensive knowledge
about unpredictable operational contexts and environmental dynamics. Conse-
quently, practitioners often depend on their intuition and insights from previous
experiences with similar systems to identify and manage uncertainties.

To tackle the current challenges of uncertainty identification, our goal is to develop
a systematic and automated approach to assist industry practitioners in identi-
fying uncertainties based on robotics system requirements. Considering the in-
creasing popularity and widespread adoption of large language models (LLMs)
across various domains [YLL+23, HOL+24], we investigate their potential for com-
prehending robotics system requirements and identifying associated uncertain-
ties. For this purpose, we leveraged requirements from four industrial robotics
use cases: the Industrial Disassembly Robot from the Danish Technological Insti-
tute (DTI), the Warehouse Robotic Swarm from PAL Robotics, the Prolonged Hull
of an Autonomous Vessel from the Norwegian University of Science and Technol-
ogy (NTNU), and Human-Robotic Interaction from Fraunhofer IFF. We selected 10
advanced LLMs with varying capabilities, namely Gemini Pro 1.5, Perplexity Sonar,
Nemotron 70B, Nova Pro, Mistral Large 2411, LLama 3.3 70B, o1 Preview, GPT-4o,
Gemini Flash 2.0, and Claude 3.5 Sonnet. For evaluation, we provided LLMswith the
software requirements of robots and carefully designed prompts containing clear
instructions and an uncertainty questionnaire (inspired by existing work [RJC12]).
After obtaining and compiling responses from the LLMs, we conducted in-person
sessions with the practitioners to discuss and gather their feedback. Using input
provided by practitioners, we analysed the quality, relevance, and usefulness of the
uncertainties identified by LLMs.

Our evaluation results demonstrated that practitioners agreed with 63–88% of the
responses generated by all LLMs. Discussions with practitioners indicated that
LLMs can effectively comprehend and analyse robotics system requirements, us-
ing both the given information and their prior domain knowledge to identify novel
uncertainties. It was observed that uncertainties are most prevalent during testing
and operational phases, with environmental dynamics identified as a major source.
Moreover, our analysis revealed that techniques like modelling, simulation, digital
twins, and uncertainty quantification are commonly used to manage uncertainty.
However, applying these techniques in practice requires substantial manual effort,
highlighting the need for automated frameworks and tools. Finally, our evaluation
suggested that LLama 3.3 70B, o1 Preview, GPT-4o, Mistral Large 2411, and Nova
Pro are the most effective LLMs for uncertainty analysis.

The complete paper, including technical details and all results, is available in Ap-
pendix D. The paper has been submitted to IEEE Software and is currently under
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review. The preprint reference is provided below.

• Hassan Sartaj, Jalil Boudjadar, Mirgita Frasheri, Shaukat Ali, and Peter Gorm
Larsen. “Identifying Uncertainty in Self-Adaptive Robotics with Large Lan-
guage Models”, arXiv:2504.20684 (2025).

5.3 Deep learning uncertainty quantification

Uncertainty may arise during the design and training of deep learning (DL) models;
therefore, uncertainty quantification (UQ) is crucial for understanding the model’s
reliability and performance. Section 5.3.1 introduces the UQ method based on
Monte Carlo dropout and two types of UQ metrics. Section 5.3.2 presents the
specific applications of the developed UQ method for assessing uncertainty and
robustness in one of our case studies, i.e., DL-based sticker detectors in the laptop
refurbishment process.

5.3.1 Monte-Carlo dropout-based uncertainty quantification

DL has revolutionised various domains, such as computer vision [VDDP18] and au-
tonomous systems [GTCM20], by providing powerful tools for predictivemodelling
and decision-making. On the other hand, DL systems are prone to unexpected and
incorrect behaviours, especially when faced with edge cases or complex scenarios,
such as adversarial attacks, noisy data, or unforeseen input distributions [CW17].
This vulnerability highlights the importance of quantifying uncertainty and evalu-
ating model robustness, which is crucial for trustworthy predictions and decision-
making, as incorrect predictions can cause critical applications to fail with serious
consequences. DL is affected by two main types of uncertainty: aleatoric and epis-
temic uncertainty [HW21]. Aleatoric uncertainty arises from inherent randomness
or variability in the system, such as sensor noises, which cannot be reduced even
by collecting more data. Epistemic uncertainty is caused by a lack of knowledge
about the best DL model, which can be reduced by involving more data.

In this deliverable, we aim to quantify epistemic uncertainty. Bayesian Neural Net-
work (BNN) provides a probabilistic approach to neural network modelling that al-
lows quantifying epistemic uncertainty through Bayesian inference [TDVDWH19].
BNN produces a distribution of possible outputs that captures the uncertainty
about the prediction, but it requires computationally expensive posterior calcu-
lations and is complex to implement. A more practical alternative is Monte Carlo
Dropout (MC-Dropout) [GG16], which offers a Bayesian approximation for quanti-
fying epistemic uncertainty. In DL, the dropout layer is commonly applied in deep
neural networks (DNNs) to avoid over-fitting by randomly dropping units along
with their connections from the network [SHK+14], and MC-Dropout shows that
introducing dropout in DNNs can be interpreted as the approximation of a prob-
abilistic Bayesian model in deep Gaussian processes. MC-Dropout approximates
the predictive distribution by generating multiple predictions based on which the
uncertainty is quantified.

Therefore, we developed a UQmethod based onMC-Dropout to capture the uncer-
tainty in DNNs used in robotic systems. To address measures for uncertainty, we
create two types of UQmetrics to quantify uncertainty in two primary fundamental
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DL problems: UQ metrics for classification and regression. For classification tasks,
we employ three standard metrics: variation ratios, predictive entropy, and mutual
information. For regression tasks, we use a standard metric called total variance
and a specialised metric called prediction surface [CYA21]. The prediction surface
was initially proposed to quantify uncertainty in object detection models for au-
tonomous driving. The object detection problem can be considered as a combina-
tion of classification and regression tasks. The model first identifies the bounding
box to locate an object (regression) and then assigns it a class label (classification).
Since object detection models typically detect multiple objects simultaneously in a
single prediction, and MC-Dropout requires multiple predictions, clustering is nec-
essary to assign each prediction to an object. To this end, we adopt the HDBSCAN
algorithm [CMS13] to cluster objects based on their predicted bounding boxes. We
then compute UQ metrics for each detected object, including metrics for bound-
ing box regression and label classification. In addition to the UQ metrics, we de-
velop novel uncertainty-based robustness metrics to measure the robustness of
DL models under uncertainty. Finally, we create a benchmark dataset construction
method based on the Vision Language Models (VLMs) and adversarial generation
techniques.

5.3.2 Assessing uncertainty and robustness in laptop refurbishment

The European Union’s Circular Economy Action Plan (CEAP) highlights the need
for sustainable operations to promote circular economy processes and encourage
sustainable consumption [CfC20]. One essential activity is refurbishing electronic
devices (e.g., laptops) to extend their lives, reduce electronic waste, and provide
affordable options for consumers. A critical and time-consuming step in refur-
bishment is removing stickers from the laptop, which involves first identifying the
stickers and their locations on the device. Manual cleaning is time-consuming and
requires finding sufficient workers; current automation solutions are not designed
for this level of variation, which limits sustainability and scalability. Thus, novel so-
lutions to transition from manual labour to automated processes are paramount.
Robotics offers a promising solution to simplify and scale up this process, increas-
ing efficiency and reducing labour costs.

The Danish Technological Institute (DTI) develops, applies, and transfers technol-
ogy to industry and society. One key area that DTI focuses on is the automatic
refurbishing of laptops. Targeting the cleaning process in laptop refurbishment,
DTI built several DNN-based sticker detection models (SDMs) for automatic sticker
detection, which is the basis for successful automatic sticker removal. The SDMs
are built on open-source object detection DNNs and trained using a sticker de-
tection dataset specially designed by DTI. However, like other DNN models, SDMs
are vulnerable to challenging scenarios such as adversarial attacks or unforeseen
input distributions. This vulnerability emphasises the need to quantify uncertainty
and assess the robustness of the SDMs, which is crucial for trustworthy sticker re-
moval, as inaccurate sticker detection could damage the laptop surface or lead to
incomplete sticker removal, affecting the overall refurbishment quality.

To this end, we conduct a comprehensive empirical evaluation to assess the SDMs
that DTI uses in the laptop refurbishing process, focusing on detection accuracy,
prediction uncertainty, and adversarial robustness. Specifically, we adopt MC-
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Dropout as the UQ method to capture the uncertainty in model predictions. We
run the model to perform multiple predictions, and based on these predictions, we
calculate two types of UQ metrics: label classification UQ metrics and bounding
box regression UQ metrics. In addition to UQ metrics, we define robustness score
(RS) to measure the robustness of the SDMs. RS measures robustness from two
perspectives: robustness concerning predictive precision and robustness concern-
ing prediction uncertainty. Regarding benchmark datasets, we construct bench-
mark datasets from three data sources: datasets provided by our partner DTI,
datasets synthesised by prompting two VLMs, i.e., DALL-E-3 [BGJ+23] and Sta-
ble Diffusion-3 [RBL+21], and datasets created using an adversarial attack tech-
nique named Dense Adversary Generation [XWZ+17]. Our evaluation results show
that different SDMs achieve different performance regarding different evaluation
metrics. Specifically, regarding sticker detection accuracy, Faster R-CNN v2 is rec-
ommended as the best SDM, while RetinaNet v2 achieved the overall best perfor-
mance regarding prediction uncertainty. Regarding adversarial robustness, Faster
R-CNN v2 and RetinaNet v2 are recommended as the best SDMs. We also quanti-
tatively studied the correlation of uncertainty quantification metrics and accuracy
(detailed in Appendix E). Finally, we also provide guidelines for SDM selection and
lessons learned.

The complete paper, including technical details and results, is available in the Ap-
pendix E. That paper has been submitted for review.

• Chengjie Lu, Jiahui Wu, Shaukat Ali, and Mikkel Labori Olsen. ”Assessing
the Uncertainty and Robustness of the Laptop Refurbishing Software”, 18th
IEEE International Conference on Software Testing, Verification and Valida-
tion (ICST) 2025.

5.3.3 Assessing uncertainty in ML-based anomaly detector

Anomaly detection identifies data patterns that deviate significantly from expected
behaviour and plays a vital role in diverse research areas, including cybersecurity,
robotics, and healthcare. In the context of robotic systems, anomaly detection
is particularly important due to the increasing autonomy and complexity of robots
operating in dynamic, real-world environments. Anomalies in robotic systems, such
as hardware malfunctions and sensor degradation, can compromise performance,
safety, and decision-making. Traditional monitoring methods often fall short in
capturing such diverse and subtle irregularities. Therefore, incorporating advanced
anomaly detection techniques, especially those based on ML and real-time data
analytics, is essential to detect and respond to failures proactively, enhance system
resilience, and build trust in robotic systems.

However, a critical limitation of many ML-based anomaly detectors is their ten-
dency to make overconfident predictions, even in situations where the model has
limited or no prior experience. This is particularly critical in robotics, where high-
stakes decisions must be made in real time, often under uncertain and dynamic
conditions. Quantifying uncertainty in anomaly detection enables the system to
express its confidence in each prediction, allowing it to distinguish between ap-
parent anomalies and ambiguous or novel situations. By incorporating uncertainty
estimates—such as those derived from Bayesian neural networks, ensemble mod-
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els, or probabilistic approaches—robotic systems can make more cautious and in-
formed decisions, inform human intervention when appropriate, and prioritise data
collection or model updates in uncertain regions.

To this end, we employ the MC-Dropout UQ method to an ML-based anomaly de-
tector developed by AUTH. Specifically, the anomaly detector detects anomalies
in lidar readings of the Turtlebot4, which takes lidar readings from the Turtlebot4
as its input and outputs 0 for normal readings and 1 if an anomaly is detected. We
employ the MC-Dropout UQ method to quantify the uncertainty of the anomaly
detection outputs. This work represents an initial concept that has been prelim-
inarily implemented in the Turtlebot4. Further exploration and development are
still ongoing.
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6 Tool support

In this chapter, we present the tools we have developed for RoboArch andRoboChart
to support the notations in techniques presented in the previous chapters. Sec-
tion 6.1 presents our support for use of RoboArch, embedded in the RoboStar
tool: RoboTool. Section 6.2 presents our encoding of Circus in Isabelle, which is
a front-end to use of Isabelle/UTP. Automatic generation of Circus semantics for
RoboChart models is the topic of Section 6.3. The application and extension of
that work to provide tool support to reason about RoboChart models that have
ANN controllers is the topic of Section 6.4. In Section 6.5, we describe how we can
use the semantics of RoboChart models to prove deadlock freedom. This work
addresses the limitation of the use of model checkers in terms of the size of the
state of the models that can be handled, while maintaining a high-level of automa-
tion. These results also provide the stepping stones for future exploration of the
semantics for proof of other properties and generation of traces. The latter will be
useful for legitimisation and trustworthiness checking.

6.1 RoboArch in RoboTool

RoboTool11 provides a set of tools, implemented as Eclipse plugins, for the Ro-
boStar notations, including RoboArch and RoboChart. As part of our efforts to
formalise in RoboArch the MAPLE-K architecture, as presented in Chapter 2.1, we
have extended the support for RoboArch in RoboTool to handle MAPLE-K layers.
In this section, we present the modelling plug-in in Section 6.1.1, and the RoboChart
generation plug-in in Section 6.1.2. The tools are available for download and use12,
where instructions for installation and use can be found.

6.1.1 RoboArch Xtext Implementation

The RoboArch language itself is built upon an Eclipse Modelling Framework (EMF)
metamodel, which we have partially presented in Section 2.1. As described in Sec-
tion 2.3, we have extended the metamodel to include a new MAPLEK pattern, and
this enables the inclusion of MAPLE-K into the underlying RoboArch models.

The textual language of RoboArch has been implemented on top of the metamodel
using Xtext13. This has produced an editor with support for syntax highlighting and
checking of the well-formedness conditions as specifications are written. We have
extended the Xtext grammar to support writing models with the MAPLEK pattern
in the textual format shown earlier in Fig. 3.

Fig. 14 shows a screenshot of the editor, where we can see part of the description in
RoboArch of the architecture for the DTI case study. The editor is implemented as
an Eclipse plugin, and can be seen with a RoboArch file named screw-detection.rac
opened. The specification shows the definition of a datatype and an enumeration as
well as two layers: ScrewDetection and Adaptation. The editor features syntax high-
lighting, which is visible through keywords displayed in bolder magenta text and

11https://robostar.cs.york.ac.uk/robotool/
12https://drive.google.com/file/d/1vy_SBFBp2vxyPIDk-wq_VmYN0rol2a_r/view?usp=sharing
13https://eclipse.dev/Xtext/
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Figure 14: The RoboArch editor, showing part of the RoboArch specification for
the DTI case study
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Figure 15: The implementation of the MK2 well-formedness condition

comments shown in green. The Adaptation layer has the MAPLE-K pattern, showing
how the grammar has been extended to handle the extensions to RoboArch.

Fig. 15 shows, as an example, our implementation of the well-formedness condition
MK2 in the Java programming language. It consists of a function, annotated with
@Check to integrate it into Xtext’s validation infrastructure. The function takes a
pattern, which is of the MAPLEK type representing an instance of the MAPLEK meta-
model element, over which the well-formedness condition is checked. The function
first calls getLegitimate() on the pattern, checking if its result is not null to deter-
mine that the pattern has a legitimate component. If a legitimate component is
present, it performs a similar check that there is not a plan component.

If both conditions hold (there is a legitimate component but no plan component),
MK2 is violated, so an error is reported using Xtext’s error function. This is split
into two cases so that the name of the containing layer can be included in the
case where the pattern belongs to a layer. (We recall the possibility of patterns
occurring elsewhere). In both cases, a literal MAPLEK LEGITIMATE is used to signal
where the error should be reported: on the pattern’s legitimate block.

6.1.2 Translation to RoboChart with Epsilon

The translation of a RoboArch model to RoboChart has been implemented using
Epsilon14 to perform a model-to-model transformation, using the rules from Sec-
tion 2.4 to map from the elements of RoboArch’s metamodel to corresponding
RoboChart elements. We have extended the existing rules with the rules for our
translation discussed in Section 2.4.2, thus allowing the automatic generation of
RoboChart models from RoboArch models using the MAPLEK pattern.

Fig. 16 shows a screenshot of the RoboChart generator available for use in Eclipse.
It shows the Convert RoboArch to RoboChart right-click context menu option for
running the tool on the RoboArch file screw-detection.rac, along with directories

14https://eclipse.dev/epsilon/
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Figure 16: The tool for converting RoboArch to RoboChart
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generated from a previous run of the tool. Our new tool generates intermediate
artefacts in the xmi-gen directory, and the RoboChart model in the rct-gen direc-
tory, which is open to show the RoboChart files produced. The csp-gen and src-
gen files are also automatically produced by existing RoboChart plugins available
in RoboTool, based on the RoboChart model our tool generates.

Epsilon is structured as a series of rules that transform a specified element of the
source model to one or more elements of the target model. The rules can have
guards restricting their application. Within the body of a rule, elements of themodel
can be created and modified, and operations can be called. The elements gener-
ated by other rules can also be obtained by invoking the rule for the element has
not already been translated. With this, we can implement the RoboArch semantics
using Epsilon rules in direct correspondence with the rules from Chapter 2.

The existing rules for RoboArch include a top-level rule that transforms a RoboArch
System to a RoboChart RCPackage, which invokes operations that dispatch to
pattern-specific translation rules for each layer to generate elements such as in-
terfaces and state machines. The components in these rules are generated by
operations that take the arguments specified in the translation rules. The imple-
mentation of the translation thus relies on a mixture of rules and operations. For
example, our Rule 1 from Chapter 2 is implemented as a rule transforming a Layer to
a set of Interfaces, whereas the rules for generating the component state machines
are implemented as operations taking multiple arguments.

Fig. 17 shows, as an example, part of our implementation of a RoboArch MAPLE-K
rule. As said, there is a one-to-one correspondence between the rules presented
in Chapter 2.1 and the Epsilon implementation. In our example, we can see the
implementation of the ExecuteStateMachine operation, which corresponds to the
translation function in Rule 9. The operation takes the parameters specified in the
rule: execute, an instance of the ExecuteComponent, amptn, the overall MAPLEK
pattern, and lyrName, the name of the layer (used to make names unique).

A new StateMachineDef named result is created, which is returned as the result of
the operation at the end, and its name component is set as specified in the rule. The
interfaces and events are added to the result. The interfaces are obtained using
an operation ref operation, which obtains references to model elements that have
already been created: in this case, RoboChart interfaces used by the state machine.
The events are added by creating new events using an operation CreateRCEvent.
The adaptationCompleted event is conditionally included based on the presence
of the analyse component. Therefore, it is constructed and added inside an if
statement, although the variable recording it is declared outside, since it is referred
to later.

After the events and interfaces have been added, the states and transitions are
created. The states are created as instances of State, although the initial junction
is instead an instance of Initial. Their names are set and they are added to the
nodes of the result. The transitions are instances of Transition, which have their
source and target defined as references to the elements of nodes, using the vari-
ables in which those elements were stored. We omit the remaining transitions for
brevity.
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Figure 17: Implementation of ExecuteStateMachine (Rule 9)
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The RoboChart automatically generated can be used in conjunction with the tools
presented later on in this chapter to reason about the RoboSAPIENS application.

6.2 Circus in Isabelle

To verify RoboChart models in Isabelle, we have created IsaCircus: a mechanisation
of Circus that supports the encoding of Circus models for theorem proving. In this
section, we present the IsaCircus syntax (Section 6.2.1), and the IsaCircus template
for presenting Circus models in Isabelle, with an example (Section 6.2.2).

6.2.1 IsaCircus Syntax

In this section, we introduce the IsaCircus syntax and the foundational types and
operators we have defined to support the syntax definition. A key feature of our
approach is the abstraction of actions and processes, providing amodular and flex-
ible modelling framework while ensuring concise and manageable definitions.

1. Declaring the Abstract Action Type

We begin by defining an abstract type for Circus actions, parametrised by two
types: 'e for events and 's for state. This type of declaration is foundational be-
cause actions represent the basic building blocks of processes in Circus.

typedecl ('e,'s) "action"

Here, we only declare an abstract type, meaning no specific internal structure is
provided yet. This allows us to use ('e,'s)action as a placeholder for any type of
action that might involve event-based interactions or state transformations.

2. Defining a Type Synonym for Processes

We then declare a type synonym for processes, which are actions with no visible
state (that is, actions whose state type is set to unit). This definition helps distin-
guish processes from actions in general, emphasising that a process in Circus op-
erates without any visible state. The state of a Circus process is encapsulated.

type_synonym 'e process = "('e, unit) action"

Here, 'e process refers to actions that only involve events but no state updates.

3. Defining Operators for Circus Actions and Processes

We specify action operators for Circus as Isabelle semantic constants. The oper-
ators include assignment, sequential composition, interrupt, guard, choice, renam-
ing, and hiding. Each operator is defined with specific type constraints to capture
its intended behaviour within a Circus process.

1) Assignment: cassigns is used to assign values to the state. It is parameterised by
a state-update function, allowing both single and multi-variable assignments.
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axiomatization cassigns :: "('s ⇒ 's) ⇒ ('e,'s) action"

Here, ('s ⇒ 's) represents a function that takes a state and returns an updated
state. This allows for flexible assignments within an action. The operator returns a
('e,'s)action, representing an action where the state is updated.

2) Sequential Composition: cseq represents a sequence of actions, where, as ex-
pected, the first action needs to terminate before the second starts.

axiomatization cseq ::
"('e,'s) action ⇒ ('e,'s) action ⇒ ('e,'s) action"

The input consists of two ('e,'s)actions, and it returns a combined ('e,'s)action
that represents the sequence of the two actions in the given order.

3) Interrupt: cinterrupt enables an action to be interrupted by another.

axiomatization cinterrupt ::
"('e,'s) action ⇒ ('e,'s) action ⇒ ('e,'s) action"

The input includes two ('e,'s)actions where the first action is interrupted by the
second, and it returns a ('e,'s)action representing the interrupt behaviour.

4) Guard: The cguard operator combines a Boolean condition with an action, mean-
ing that the action only executes if the guard condition (predicate) is true.

axiomatization cguard ::
"(bool ,'s) expr ⇒ ('e,'s) action ⇒ ('e,'s) action"

Here, (bool,'s)expr represents the guard’s predicate, which must be true for the
action to proceed. The operator takes a Boolean expression (bool,'s)expr and a
('e,'s)action, and it returns a ('e,'s)action for the guarded action.

5) Internal Choice: cIChoice models a non-deterministic choice among a set of ac-
tions, allowing us to define actions where multiple outcomes are possible.

axiomatization cIChoice ::
"'i set ⇒ ('i ⇒ ('e,'s) action) ⇒ ('e,'s) action"

The operator cIChoice takes a set of indices ('i set), which defines the possible
choices, and a function ('i ⇒ ('e,'s) action) that maps each index to a corre-
sponding action. It returns a ('e,'s)action representing the non-deterministic in-
ternal choice, where one action is chosen from the set and executed.

6) External Choice: Similar to internal choice, cEChoice allows an action to be se-
lected from multiple alternatives, but external inputs define the choice.

axiomatization cEChoice ::
"'i set ⇒ ('i ⇒ ('e,'s) action) ⇒ ('e,'s) action"
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7) Renaming: crenaming applies a renaming function to the events of an action,
mapping each event of the input action to a given event in the output action.

axiomatization
crenaming :: "('e ↔ 'f) ⇒ ('e,'s) action ⇒ ('f,'s) action"

The operator crenaming takes a renaming relation and an action, and returns a
('f,'s)action, allowing for flexible adaptation of events within an action.

8) Hiding: chide makes specified events invisible to the external environment, ef-
fectively creating events for internal use only.

axiomatization chide :: "('e,'s) action ⇒'e set ⇒ ('e,'s)
action"

The operator chide takes an action and a set of events 'e set to be hidden, and
returns an action where these events are concealed from the environment.

9) Iterated Interleaving: The cInterleave operator models the interleaved execu-
tion of a set of actions, where actions execute independently without synchronisa-
tion.

axiomatization cInterleave ::
"'i set ⇒ ('i ⇒ ('e,'s) action) ⇒ ('e,'s) action"

The operator cInterleave takes an index set 'i set and a function ('i ⇒ ('e,'s)
action) mapping each index to an action, and returns an action that represents the
interleaved execution of the actions indexed by 'i.

10) Iterated Parallel Composition: The cParallelIte operator extends parallel com-
position to a set of actions that synchronise on a shared event set, allowing for
more complex parallel combinations via iterated parallelism.

axiomatization cParallelIte ::
"'e set ⇒ 'i set ⇒ ('i ⇒ ('e,'s) action) ⇒ ('e,'s) action"

The operator cParallelIte takes an event set 'e set for synchronisation, an index
set 'i set for identifying actions, and a function mapping each index to an action.
It returns an action that represents the parallel execution of all the indexed actions,
synchronising on the specified event set.

11) Parameterised Action: The cParam operator allows for the parameterisation of
an action over a set of indices, creating a more generalised form of an action.

axiomatization cParam :: "'i set ⇒ ('e,'s) action ⇒ ('e,'s)
action"

The operator cParam takes an index set 'i set and an action, then returns an action
representing the parameterised action over the given index set.

12) Process: The cProcess operator is used to define a process from an action, ef-
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fectively encapsulating an action as a process. This operator allows an action to be
lifted to a standalone process that can be composed with other processes.

axiomatization cProcess :: "('e,'s) action ⇒ 'e process"

The operator cProcess takes a ('e,'s)action, which represents a specific set of be-
haviours involving events 'e and states 's, and returns an 'e process, encapsulating
the given action. This process can then be used as a component to model complex
system behaviours through the composition of multiple processes.

13) Prefix: The cprefix operator enables an action to wait for an event on a specific
channel and then proceed if a certain condition is met.

axiomatization cprefix :: "('a,'e) chan ⇒ ('a ⇒ (('s ⇒ bool) ×
('e,'s) action)) ⇒ ('e,'s) action"

The input for cprefix consists of a channel ('a,'e)chan and a function. The channel
('a,'e)chan represents the prefixing communication channel. For this ('a,'e)chan
type, 'a represents the value type associated with the event, which might hold the
information that a channel transmits; 'e represents the event type of the chan-
nel.

The function ('a ⇒ (('s ⇒ bool) × ('e,'s) action)) takes an event value of type
'a and returns a tuple consisting of a state predicate ('s ⇒ bool) and an action
('e,'s)action. The predicate determines whether the events are enabled. The
prefix operator returns a ('e,'s)action, representing the complete action that waits
for an event, checks a state-based condition, and then executes the appropriate
action if the condition is met.

Using the prefix operator, we can further define prefix actions with specific com-
munication types, such as input or output prefixes. The cinput operator defines
an action that waits for an input value on a specified channel and then executes a
subsequent action based on the received input.

definition cinput ::
"('a,'e) chan ⇒ ('a ⇒ ('e,'s) action) ⇒ ('e,'s) action"
where "cinput c A = cprefix c (λv. ((λs. True), A v))"

The operation cinput is implemented using cprefix, which has two parameters: the
channel c serves as the input channel, the function λv. ((λs. True), (A v)) takes
an input value v and returns a tuple. The first element of the tuple (λs. True) is a
state condition function that always returns True for any state s, ensuring that the
action can proceed regardless of the state, and allowing a value v to be received
on channel c. In the second element (A v), A is a function of type ('a ⇒ ('e,'s)
action), which means it takes an input value v of type 'a and returns an action of
type ('e,'s)action. A v is the result of applying A to the input v, producing an action
that defines what should happen next based on the input v.

The csync operator uses cprefix to define a synchronisation action that waits for
an event on a channel and executes an action when the event occurs.
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definition csync :: "(unit ,'e) chan ⇒ ('e,'s) action ⇒ ('e,'s)
action" where

"csync c A = cprefix c (λv. (λs. True , A))"

The channel c is of type (unit,'e)chan. The use of unit indicates that the channel is
used purely for synchronisation and does not transmit any data. This reflects the
fact that csync is about waiting for an event to occur without processing any input
data. A is an action of type ('e,'s)action. Unlike cinput, csync does not use an input
value to determine the action; instead, it always executes the given action A when
an event occurs on channel c. The function (λ v. (λ s. True, A)) is used in the
definition of csync as the second parameter for cprefix. The function (λs. True)
is the state condition indicating that the action can proceed in any state. A is the
action to be executed when the synchronisation event occurs.

csync is defined using cprefix, but because the channel type is (unit,'e), it signals
that the synchronisation occurs without any data being sent or received. Thev
parameter exists as part of cprefix’s interface but does not carry any significant
data, as the channel type indicates that there is no meaningful input.

The coutput operator defines an action that outputs a value on a channel and then
proceeds with a given action, independent of the output value.

definition coutput :: "('a,'e) chan ⇒ ('a,'s) expr ⇒ ('e,'s)
action ⇒ ('e,'s) action" where

"coutput c e A = cprefix c (λv. ((λs. v = e(s)), A))"

The operator coutput takes three parameters: c is a channel of type ('a, 'e)chan,
where 'a represents the type of data transmitted on the channel; and e is an ex-
pression of type ('a,'s)expr. The definition of expr is as below.

type_synonym ('a,'s) expr = "'s ⇒ 'a"

It evaluates to a value of type 'a based on the current state s. It represents the
value to be sent on the channel. Finally, A is an action of type ('e,'s)action that is
executed after the value is output. The operator coutput is defined using cprefix.
The two parameters passed to cprefix are the channel c and a function that defines
a pair: (λv. (λs. v = e(s), A)). The first element (λs. v = e (s)) is the state
condition checking that the received value v matches the value computed by e(s).
The value v is the data transmitted on the channel c. The second element A of the
pair defined by the function is the action to be executed if the condition is met.

The operator coutinp combines both coutput and cinput behaviours. It outputs a
value on a channel c and then performs an action based on the input value re-
ceived.

definition coutinp :: "('a × 'b,'e) chan ⇒ ('s ⇒ 'a) ⇒ ('b ⇒
('e,'s) action) ⇒ ('e,'s) action" where

"coutinp c v A = cprefix c (λ(x, y). (λs. x = v s, A y))"

The coutinp operator waits for an event on the specified channel c, then sends a
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value calculated by v(s) based on the current state s. Once the output is sent, it
waits for a response value of type 'b. The received value is passed to the function
A, which determines and returns the action to be executed based on the input.

Some other operators are also defined based on the available axiomatization. Skip
represents an action that terminates immediately and leaves the state unchanged.
It is defined using cassigns with the identity function id, which means the state
remains the same after the action is executed.

definition Skip :: "('e, 's) action" where "Skip = cassigns id"

Stop represents an action where the process cannot proceed and is blocked. It is
defined as an external choice over an empty set, which means no external event
can trigger the continuation, effectively halting the process.

definition Stop :: "('e, 's) action" where
"Stop = cEChoice ({}::bool set) (λi. Skip)"

The operator cichoice models an internal choice between two actions P and Q.
The internal choice is non-deterministically decided by choosing either True (which
leads to P) or False (which leads to Q).

definition cichoice :: "('e, 's) action ⇒ ('e, 's) action ⇒
('e, 's) action" (infixl "⊓" 59) where
"cichoice P Q = cIChoice {True , False} (λ b. if b then P else

Q)"

The operator cechoice represents an external choice between two actions P and Q.
The choice is externally determined by an environment event that chooses True
(leading to P) or False (leading to Q).

definition cechoice :: "('e, 's) action ⇒ ('e, 's) action ⇒
('e, 's) action" (infixl "□" 59) where
"cechoice P Q = cEChoice {True , False} (λ b. if b then P else

Q)"

The operator cparallel represents a binary parallel composition.

definition cpapallel :: "'e set ⇒ 'i set ⇒ ('i ⇒ ('e,'s)
action) ⇒ ('e,'s) action" where

"cparallel P A Q = cParallelIte A {True , False} (λ b. if b
then P else Q)"

4. Defining Syntactic Constant for IsaCircus Operators

IsaCircus defines the Circus action operators as Isabelle semantic constants. Af-
ter the definition of the operators, we define syntactic constants for each of the
semantic constants that provide a readable syntax for these operators in Isabelle,
allowing users to write complex logical expressions using concise symbols. For
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example, the syntax for cinput is defined as below.

syntax "_cinput" :: "id ⇒ pttrn ⇒ logic ⇒ logic" ("_?'(_') →
_" [61, 0, 62] 62)

Here� id refers to the identifier of the channel (for example, c), corresponding to
the ('a, 'e)chan type in the cinput definition. The argument pttrn is typically used
for pattern matching, and here represents the pattern for the input data (for ex-
ample, x), corresponding to the 'a type input value used in cinput. The argument
logic corresponds to any term constructible in HOL, and here refers to a logical
expression or action performed after receiving the input (for instance, A). This cor-
responds to the ('e, 's)action type in the cinput definition.

The syntax definition specifies how user-friendly input notation, such as c?(x)→
A, maps to its logical form in Isabelle. The notation ("_?'(_')→ _"[61, 0, 62] 62)
defines how the input is parsed, with c?(x)→ A being interpreted as a prefix on
c waiting for an input value x (matching pttrn), and, after receiving x, performing
A.

5. Translating between Syntax and Semantics

A further task is to define translation rules that map the syntactic constants to
their corresponding semantic constants. For example, the translation rule between
_cinput (the syntactic constnat above) and cinput is as below,

translations "_cinput c x P" == "CONST cinput c (λ x. P)"

According to the rule above, the syntax c?(x)→ A for an input action is translated
into the function call cinput c (λx. P). The CONST keyword is used in translation
rules to mark the defined logical functions as semantic constants. The rule ensures
that when Isabelle processes symbolic input, it is mapped correctly to the underly-
ing semantics, or vice versa. In the example rule above, the left side "_cinput c x P"
is the user-facing notation that is written or presented in Isabelle. The right side
"CONST cinput c (λx. P)” tells Isabelle to parse this notation as a call to the "cinput"
function, with c, x, and P as parameters.

In summary, the axiomatic approach for IsaCircus, as described above, allows for
the systematic definition and structuring of the types and operators needed for
modelling RoboChart processes. The types and operators defined here provide a
versatile and extensible foundation for representing process behaviours.

6.2.2 Template of a Circus model in IsaCircus

Based on the types and operators defined in Section 6.2.1, we have designed an
IsaCircus template for the RoboChart semantics in Circus. It is shown in List 1. This
template shows the structure of IsaCircus theory and is also used as the basis for
model-to-text transformation from the Circus model.

In the IsaCircus template, placeholders and specific formatting conventions are
used to help structure and customise the model. Text enclosed in angle brack-
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Listing 1: IsaCircus template
1 subsection < Types declaration >
2 type_synonym <type_name > = <type>
3 datatype <Etype > = <literal > (| <literal >)+
4 record <record1 > = (<field >:: "<type>")+
5
6 subsection < Constants declaration >
7 consts <const > :: "<type>"
8
9 subsection <Channel Declaration >
10 chantype mychan = (<chan> :: <type >)+
11
12 subsection <Channel Set Declaration >
13 definition "<chanset > = {|<chan> (,<chan >)+|}"
14
15 subsection <Function Definition >
16 definition <fun_name > :: "<type> (⇒ <type >)+"
17 where "<fun_name > (<para >)+ = <definitionOfFun >"
18
19
20 locale <proc>
21 begin
22 actions is "(mychan , unit) action" where
23 "<action > = <action_definition >"
24 (| "<action > = <action_definition >")+
25
26 definition "MainAction = cProcess <action >"
27 end

ets <...> represents placeholders that should be instantiated with specific names
or values depending on the particular model being created. For instance, the place-
holder <type_name> (line 2) should be replaced with a relevant data type name, and
<action> (lines 26-27) with an appropriate action label.

In the template, the text in dark blue represents Isabelle’s command keywords, e.g.,
datatype (line 4), type_synonym (line 2), consts (line 7), and definition (lines 18, 19).
The green text (e.g., where (lines 18, 25)) represents reserved keywords.

Each process in IsaCircus is defined within a locale environment (line 26), where a
process is represented by a set of actions that define its behaviour. This template
provides a structure to define a Circus process, covering key elements such as
types, constants, channels, channel sets, functions, and process actions.

Types are declared using the type_synonym (line 2) and datatype (line 3) keywords,
which are used to define type synonyms and data structures relevant to the model.
Records are declared using the record keyword (line 4) to group related fields into
structured data types. They correspond to schema types, available in Z and Circus,
in the scope of the process. Constants are specified with the consts keyword (line
7), representing fixed values or parameters referenced within the process. These
correspond to axiomatic descriptions, from Z and Circus, for the process.

Channels are declared using the chantype keyword (line 10).The clause introduced
by chantype fixes the number of channels you have. No channel should be declared
outside chantype. A Channel Set is then defined with the definition keyword (line
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Figure 18: A two-step transformation strategy to convert RoboChart models into
IsaCircus.

13), grouping channels into a set for synchronised communication.

Functions can be declared in the clause introduced with the definition keyword
by filling in the placeholders for their names, parameters, and definitions (line 16).
Again, this corresponds to an axiomatic description local to the process.

Each Circus process is encapsulated within a locale environment (using the locale
keyword), enabling modular design and parameterisation of process-specific ac-
tions. Within the locale, a set of actions is defined in clauses introduced using the
actions keyword to specify behaviours that the process can perform. The main
action (line 26) is identified using "MainAction", which serves as the core execution
body of the process and is modelled using the cProcess keyword.

In the next section, we show how to use this template to capture the semantics of
RoboChart in IsaCircus, covering also RoboChart models that include an ANN.

6.3 RoboChart transformation to IsaCircus

In this section, a two-step transformation strategy is employed to give semantics to
RoboChart models using IsaCircus, as shown in Fig. 18. This process consists of an
initial transformation from RoboChart toCircus bymodel-to-model transformation,
followed by a model-to-text transformation from Circus to IsaCircus.

To transform RoboChart models into Circus models, we have defined a Circus
metamodel that aligns with the CZT [RNS+05] abstract syntax tree for Circus.
RoboChart models are equipped with CSP semantics. Therefore, we do not de-
fine a new set of formal semantics using Circus. Instead, we consistently follow
the CSP semantics of RoboChart models, as documented in the RoboChart man-
ual [MRY+21], to generate Circus models. Based on the Circus metamodel, along
with the existing RoboChart metamodel, we have defined and implemented a set
of mapping rules to guide the transformation from RoboChart to Circus accord-
ing to the CSP semantics of RoboChart. A summary of the mapping rules is listed
below.

• Each RoboChart model is transformed into a Circus Spec, which contains a
narrative section and a ZSection.

• ZSection is the main body of the Circus model, including a list of Z paragraphs
of different types:

– An Enumeration type in RoboChart is mapped to a FreePara in Circus.
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– A RoboChart Primitive type is mapped to a Circus GivenPara.

– A RoboChart Record type is mapped to a Circus AxPara with SchBox.

– A RoboChart function is mapped to a Circus AxPara with AxBox.

– ARoboChart constant declaration is mapped to a AxPara which has sche-
maText.

– A RoboChart event is mapped to a Circus ChannelPara.

– An event set is mapped to a ChannelSetPara.

– In the CSP semantics, each RoboChart component is a CSP process. How-
ever, this is not the case in our Circus semantics. The high-level com-
ponents of RoboChart are transformed into Circus Process Paragraphs,
including Module, Module Memory, Buffer, and Controller. This is to al-
low us to use the full range of CSP operators to combine the actions that
capture the individual elements of the RoboChart model.

– The rest of the RoboChart components are transformed into Circus Ac-
tion Paragraphs. The components to be transformed into Circus Action
Paragraphs include Controller Memory, State Machine, Variable Memory,
Shared Variable Memory, Individual Variable Memory, Individual Shared
Variable Memory, Node Container, Transitions, and Node. A Node can be
a junction, a final state, a simple state, or a composite state. Each node is
transformed into a set of Action Paragraphs.

• The exception operator has been used in the CSP semantics of RoboChart. As
the exception operator is not supported in Circus we avoid it by introducing
synchronisation on termination.

• Channel declarations in the CSP semantics are not documented in the RoboChart
Manual, but needed to be implemented, as they are in the CSP automatic gen-
erator.

• Modular design allows complex systems to be decomposed intomultiplemod-
ules, each with nested submodules. This approach helps to organise the hier-
archical structure of complex systems, especially when modelling large sys-
tems or subsystems with intricate behaviours. Modular design also allows
components in different modules to have the same name, distinguished by
identifying their scope. Both RoboChart and CSP support modular design:
RoboChart via packages, and CSP via modules. However, Circus does not
support modular design for processes, so when we transform RoboChart to
Circus, we need to name each component using its fully qualified name.

The complete set of mapping rules has been implemented using the Eclipse Ep-
silon framework, specifically the Epsilon Object Language (EOL), enabling the full
automation of the transformation process from RoboChart to Circus models.

For the second step of the transformation strategy, using the syntax defined in
Section 6.2.1 and the template in Section 6.2.2, we have implemented the model-
to-text transformation from Circus to generate IsaCircus using Epsilon Generation
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Language (EGL). Listing 2 sketches the IsaCircus encoding of the process for the
AnglePIDANN controller defined by Rule 2 in Appendix B.

As illustrated in Listing 2, the notation of the IsaCircus definition of AnglePIDANN is
very similar to that indicated in Rule 2. In detail, we declare an event type ANNChan
(line 1 in Listing 2). It includes all channels used in the semantics. The definition
of the activation function, relu, is shown in line 7. We show part of the locale
for AnglePIDANN (lines 9-23). Three of the nine actions of AnglePIDANN are shown in
Listing 2, among which the main action MainAction is identified as CircANN (line 22)
using the cProcess operator.

Listing 2: AnglePIDANN example in IsaCircus

1 chantype ANNchan = terminate :: "unit"
2 layerRes :: "nat × nat × real"
3 nodeOut :: "nat × nat × nat × real"
4 adiff :: "real"
5 ...
6
7 definition relu :: "real ⇒ real" where "relu x = max 0 x"
8
9 locale <AnglePIDANN >
10 begin
11 actions is "(ANNchan , unit) action" where
12
13 "Collator(l, n, i :: nat , sum :: real) =
14 (i = 0) & layerRes . l . n ! relu(sum + biases(l)(n)) → Skip □
15 (i > 0) & nodeOut . l . n . i?x → Collator(l,n,(i-1) ,(sum+x))" |
16 ...
17 "ANN = (HiddenLayers [[ | {|layerRes . 1 . 1 |} | ]] OutputLayer);; ANN" |
18
19 "CircANN = ((Interpreter [[ | {|layerRes . 0, layerRes . 2 |} | ]] ANN) \ {|

layerRes |}) △ (terminate → Skip)"
20
21 definition "MainAction = cProcess CircANN"
22 end

6.4 Reasoning about ANN

This section provides an overview of our toolchain for modelling, validating, and
verifying AI-enabled robotic software using RoboChart (see Figure 19). We have
built upon the work in the previous section and existing work on generating a CSP
semantics for RoboChart to mechanise the semantics of ANN controllers.

Our modelling approach is mechanised as part of RoboTool, where RoboChart
and its two semantics (one in Circus, implemented using the Epsilon framework
as described in the previous section; and one in CSP, mechanised via Xtend, a Java
variant15) are mechanised to support transparent automatic generation. We have

15eclipse.dev/Xtext/xtend/
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leveraged EMF to implement the RoboChart metamodel, and the Sirius platform 16

to enable graphical modelling. We enable textual editing of models via an Xtext
grammar 17. Further, we mechanise the set of well-formedness conditions for these
models through a validation checker written in Xtend. See Figure 20 for a screen-
shot of the extended RoboTool.

Figure 19: Our toolchain for the modelling and verifying AI-enabled robotic soft-
ware. M2M: model-to-model; M2T: model-to-text.

We mechanise the semantics of RoboChart using a model-to-text translation from
RoboChart to CSPM18, enabling the use of FDR419 for model checking. This allows
process verification of AI-enabled systems, which can assert structural properties
on these systems, but not functional properties.

We enable verification of these models using Isabelle, following the approach pre-
sented in the previous section. As explained in Chapter 4, however, to enable use
of AI-specific verification tools, such as Marabou, we require a reachability condi-
tion expressed as a predicate on a vector space. To formally obtain this condition,
we use Isabelle/UTP [FZN+19]. This allows us to develop a formalism that cap-
tures reactive processes using alphabetised predicates. Using this theory, we can
create lemmas that link the semantics of RoboChart directly to ANN reachability
conditions. When we have these conditions, we can use dedicated ANN theorem
provers.

6.5 Deadlock-freedom verification in Isabelle

This section describes our approach to verifying deadlock freedom of IsaCircus
models with the Isabelle proof assistant. We develop this method by building on

16eclipse.dev/sirius
17eclipse.dev/Xtext/
18cocotec.io/fdr/manual/cspm.html
19cocotec.io/fdr/
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Figure 20: A screenshot of our tool: RoboTool with ANN components. Users can
specify ANN components using the Artificial Neural Network Components tab on
the palette, located on the right-hand side. We enable the specification of the
complete software module via the other components in the palette.

proof principles from HOL-CSP [TWY20] and adapting them to IsaCircus. The ap-
proach leverages the syntactic and semantic similarity between the two languages,
with Circus including the whole of CSP, and having a UTP semantics based on an
extended version of the failures-divergences semantics of CSP. (The UTP theory of
Circus allows for programming variables in the state, and defines a complete lat-
tice.) So, we use the HOL-CSP results to guide the expression of verification laws
and support automation through IsaCircus-specific tactics.

Beyond checking for deadlock-freedom alone, our method also supports reasoning
about invariants embedded in the model. This is achieved by using an assumption–
guarantee strategy in the process definitions. For verification, each process is au-
tomatically enriched during model-to-model transformation with guarantee con-
ditions, including invariants that it must preserve. These guarantees are encoded
directly into the semantics, such that violating a guarantee results in an immediate
deadlock.

As a result, a successful proof of deadlock freedomensures not only that the system
has no deadlocks, but also that all guarantee conditions, interpreted as invariants,
are upheld throughout execution. Conversely, if deadlock freedom cannot be es-
tablished, the failure may be caused either by a genuine deadlock or by a violation
of the specified guarantees. So, our work can be used to prove deadlock freedom,
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as we describe here, and also for invariant checking.

We begin this section by presenting a semantics enrichment for deadlock-freedom
formal verification (in Section 6.5.1). The proof method used to establish deadlock
freedom is then subsequently presented (in Section 6.5.2).

We have applied the verification technique to a more detailed version of the navi-
gation robot discussed in Section 2. For clarity and brevity, we use an abstract ex-
ample to illustrate the semantics enrichment process in Section 6.5.1. We discuss in
detail the verification proof for that navigation robot example in Section 6.5.2.

6.5.1 Semantics enrichment for deadlock-freedom checking

To facilitate deadlock freedom analysis, we have enriched the semantics of the
Circus model without altering its original meaning.

Conversion of IsaCircus into Parametrised recursive Processes Our IsaCircus
models, which are automatically generated from RoboChart models, have no state
variables. To facilitate deadlock-freedom verification in Isabelle, we rewrite IsaCir-
cus actions into parametrised recursive actions. A key transformation involves the
Trans process, which captures the transition behaviour of a RoboChart state ma-
chine. While Trans generated from RoboChart in IsaCircus does not explicitly refer-
ence the active node, we introduce a parameter st representing the current active
state.

According to the RoboChart Circus semantics, Nodes and Transitions synchronise
on trigger events. Each trigger event name encodes the source node identifier
(e.g., b !NID s1.in), ensuring that a transition is only enabled when the system is
in its corresponding source state. That is, transitions are semantically guarded by
their source node, even if no explicit guard appears in the model.

Adding an explicit guard st = src to each transition does not alter the behaviour of
the model. It simply makes the existing semantic constraint explicit. Since synchro-
nisation on trigger events is only possible when the active node matches the tran-
sition’s source, the added guard is redundant from a behavioural perspective.

However, this transformation significantly benefits verification. By making the ac-
tive state an explicit parameter, we enable structured reasoning in Isabelle, such as
case analysis over the possible values of st.

We illustrate this alteration with a simple example. Fig. 21 illustrates a RoboChart
state machine named stm04, which declares an integer variable v1. The initial node
i transits to state s0 with a transition action assignment v1 = 2. From s0, there is a
single transition to s1 with guard v1 ≥ 1. From s1, there are two transitions back
to s0, one triggered by the event a, and the other with guard v1 < 1, respectively.
The IsaCircus semantics of this RoboChart model can be automatically calculated
using our tool; we only show here the transition action in Listing 3.

Listing 3 uses IsaCircus’s actions block to specify the behaviour of two actions:
the self-looping action SSTOP, and the recursive action Trans. As shown in Listing 3,
Trans reads an input value via get_v1, and then branches through a sequence of
internal and external actions based on the value of the shared variable v1 and the
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Figure 21: A RoboChart example.

Listing 3: Trans example in IsaCircus

1 locale <Trans >
2 begin
3 actions is "(mychan , unit) action" where
4 "SSTOP = share → SSTOP" |
5 "Trans =
6 (SSTOP △ (get_v1?v1 → (
7 ((internal_.NID_i0 → (SSTOP △ (set_v1!2 → Skip)));; (enter_s0

→ Skip)
8 □
9 (v1 ≥ 1) & ((internal_.NID_s0 → Skip);; ((SSTOP △ (exit →

Skip));; (SSTOP △ ((exited → Skip);; (enter_s1 → Skip)))))
10 □
11 (v1 < 1) & ((( internal_.NID_s1 → Skip);; ((SSTOP △ (exit →

Skip));; (SSTOP △ ((exited → Skip);; (enter_s0 → Skip))))))
12 □
13 ((a__in.NID_s1 → Skip);; ((SSTOP △ (exit → Skip));; (SSTOP △

((exited → Skip);; (enter_s0 → Skip))))))
14 ;; Trans)))"
15 end

current control state. Each branch uses guarded actions and sequential composi-
tion to model specific transition paths, followed by a tail recursion. The enriched
model with parametrisation and modified recursion is shown in Listing 4.

Compared to the original IsaCircus model in Listing 3, in Listing 4 Trans differs
in two ways: state parametrisation and distributed recursion. The active state is
made explicit via a parameter n, representing the active node in the state machine.
Because Trans is now parametrised by n, the recursion is no longer applied at the
top level, but pushed into each choice branch. That is, every path that continues
the execution invokes Trans with an updated state argument.

Semantics enrichment of invariants In the verification of deadlock freedom for
RoboChart models, our focus is on the actions Trans, which capture the behaviours
of all transitions in the state machines. It is the transitions that can become all
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Listing 4: Trans example in IsaCircus with parameterization and recursive features

1 locale <Trans >
2 begin
3 actions is "NIDS ⇒ (mychan , unit) action" where
4 "SSTOP = share → SSTOP" |
5 "Trans(n) =
6 (SSTOP △ (get_v1?v1 →
7 ((n = NID_i0) & ((internal_.NID_i0 → (SSTOP △ (set_v1!2 →

Skip)));; (enter_s0 → Trans(NID_s0)))
8
9 □
10 (n = NID_s0) & (((v1 ≥ 1)) & ((internal_.NID_s0 →

Skip);; ((SSTOP △ (exit → Skip));; (SSTOP △ ((exited →
Skip);; (enter_s1 → Trans(NID_s1)))))))

11 □
12 (n = NID_s1) & ((v1 < 1) & ((internal_.NID_s1 → Skip);;

((SSTOP △ (exit → Skip));; (SSTOP △ ((exited →
Skip);; (enter_s0 → Trans(NID_s0)))))))

13 □
14 (n = NID_s1) & ((a__in.NID_s1 → Skip);; ((SSTOP △ (exit →

Skip));; (SSTOP △ ((exited → Skip);; (enter_s0 →
Trans(NID_s0)))))))))"

15 end

disabled and, therefore, lead to a deadlock.

We first consider the potential causes of deadlock. Our analysis begins with the
transitions in state machines. When focusing solely on the behaviour of transitions,
one primary cause of deadlock is the presence of a state (excluding final states)
with not enough outgoing transitions. Additionally, outgoing transitions may be-
come disabled due to actions performed during transitions or within states, which
may cause the transition conditions to evaluate to false.

Apart from such internal causes, deadlock may also result from external factors.
For instance, a parallel state machine may write to a shared variable used in the
state machine to be checked in a way that invalidates the condition of a transition,
thus disabling it and potentially leading to deadlock.

To address external causes of deadlock in our verification, we enrich the semantics
of our model using invariants. This is achieved through an assumption–guarantee
strategy, where assumptions state that values read from the environment satisfy
the invariant, and guarantees ensure that variable updates made by the model pre-
serve it. Specifically, we enrich the semantics of shared variable access by inserting
assumptions and guarantees that restrict reading and writing actions.

When the model under verification reads a shared variable, we assume that, even
though the environment may have updated its value, the value still satisfies a given
invariant. Likewise, when the model itself writes to a shared variable, it must guar-
antee that the new value continues to satisfy the invariant. Otherwise, a violation
occurs, and the model transitions to STOP, representing a deadlock.
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Listing 5: Trans example in IsaCircus with assumption-guarantee feature

1 locale <Trans >
2 begin
3 abbreviation "assume b Q P ≡ (if b then P else aviol → Q)"
4 abbreviation "guar b P ≡ (if b then P else gviol → STOP)"
5 actions is "(mychan , unit) action" where
6 "SSTOP = share → SSTOP" |
7 "Trans(n) =
8 (SSTOP △ (get_v1?v1 → (assume (v1 ≥ 1) (Trans(n))
9 ((n = NID_i0) & (((internal_.NID_i0 → (SSTOP △ (guar

(2::int ≥ 1)(set_v1!2 → Skip))));; (enter_s0 →
Trans(NID_s0))))

10 □
11 (n = NID_s0) & ((((v1 ≥ 1)) & (((internal_.NID_s0 →

Skip);; ((SSTOP △ (exit → Skip));; (SSTOP △ ((exited →
Skip);; (enter_s1 → Trans(NID_s1)))))))))

12 □
13 (n = NID_s1) & ((((v1 < 1)) & ((( internal_.NID_s1 →

Skip);; ((SSTOP △ (exit → Skip));; (SSTOP △ ((exited →
Skip);; (enter_s0 → Trans(NID_s0)))))))))

14 □
15 ((n = NID_s1) & ((a__in.NID_s1 → Skip);; ((SSTOP △ (exit

→ Skip));; (SSTOP △ ((exited → Skip);; (enter_s0 →
Trans(NID_s0)))))))))))"

16 end

To enable the above approach, we introduce two new events: aviol for assumption
violation, and gviol for guarantee violation. The enriched IsaCircus model that uses
these events for the RoboChart example in Fig. 21 is shown in Listing 5.

In this model, two abbreviations are defined to express common contract-based
behaviours concisely. The first one, assume b Q P, means that if b is true, the sys-
tem proceeds with P. However, if the assumption is violated, the system raises an
assumption violation via the aviol channel and then executes the fallback process
Q; in the case illustrated in Listing 5 (line 8), this is Trans(n). This mechanism cap-
tures the idea that the system behaves normally when its assumptions are satisfied;
otherwise, it reacts with a violation signal and recurses back to Trans(n).So, if the vi-
olation happens, it is signalled, and the process continues to accept the next value.
A deadlock is not reported because this is not caused by Trans(n).

When verifying the deadlock freedom of Trans for this example, we introduce the
invariant on the shared variable v1 that v1 should always be greater than 1. This
invariant can be derived automatically from the RoboChart models by calculating
its weakest condition using the conditions of each transition. This automation will
be implemented in a future phase of the project. Therefore, for the assumption we
have v1 ≥1 (line 8). So, we are, in effect, considering two branches in the proof: one
where the assumption holds, and one where it does not. However, our interest
lies in the case where the assumption is satisfied, since deadlocks that result from
assumption violations are attributed to the environment’s behaviour rather than to
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that of the verified process.

To explicitly represent the assumption-violation case in the model, we use, via the
assume construct, the action aviol →Trans(n). The deadlock freedom of this con-
struct is discharged intuitively, as Trans(n) is recursive. Therefore, in the deadlock-
freedomproof, we then focus exclusively on the assumption-satisfaction case, which
is the true subject of verification of interest here.

The second abbreviation, guar b P, represents that if condition b holds, it continues
as P. In the definition of Trans, the action P models the writing of the variable value
to the memory via a set channel. According to the invariant of the RoboChart ex-
ample, we have the guarantee condition that the written value 2 should be greater
than 1, i.e., 2::int ≥1 (Listing 5 line 8). But if the guard is false, it raises a guarantee
violation through the gviol channel and then halts execution with STOP.

This enrichment is introduced for checking the deadlock freedom of themodel, and
it does not alter the original semantics of the RoboChart model. When aviol is not
available, the process behaves exactly as before. When aviol is offered, the pro-
cess behaves as aviol →Trans(n). Therefore, during the deadlock-freedom anal-
ysis of the transitions of an individual state machine, we restrict our attention to
execution paths where all assumptions on shared variables are satisfied. Paths that
violate these assumptions are considered outside the scope of this analysis, as han-
dling them requires a system-level view where interactions between processes are
taken into account. Such assumption-violating paths become relevant only when
analysing a larger system composed of multiple interacting processes, where it is
necessary to ensure that the assumptions of all components are mutually compati-
ble. As a result, in our proof, we only need to consider traces that respect all stated
assumptions. This ensures that any deadlock detected within this analysis reflects
the behaviour of the process itself under the assumption of a well-behaved envi-
ronment, and is not caused by unexpected interference from other processes. The
advantage of using assumptions is that it enables modular reasoning and allows
us to prove deadlock freedom for individual components under assumption satis-
faction. However, ensuring system-wide deadlock freedom requires verifying that
all component assumptions can be satisfied simultaneously during system opera-
tion.

Similarly, the use of guar does not alter the original semantics of the RoboChart
model. A guarantee violation corresponds to undefined or invalid behaviour. In
the formal model, the construct gviol <rightarrow> STOP explicitly models this out-
come: any execution path that violates the guarantee will be forced to terminate at
STOP. This makes such violations observable and ensures that their impact is prop-
erly accounted for during verification, including deadlock analysis. This mechanism
does not introduce any new valid behaviours. Provided that the guarantee condi-
tions hold�which is the case in correct designs�the behaviour is that of the original
model. Hence, the enrichment is a conservative extension: it preserves the original
semantics for executions that respect the invariant, while exposing internal errors
for analysis. In particular, the semantics of the original model remains unchanged
along traces where all components of the RoboChart model maintain the invariant
in their updates to shared variables.
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6.5.2 Proof method of deadlock freedom

Our strategy for verifying deadlock freedom combines normalisation with natural
deduction reasoning, applying both techniques throughout the proof process.

We incrementally apply normalisation during the construction of the proof. This
allows us to simplify individual parts of the action expression as needed, trans-
forming complex constructs such as guarded choices or sequential compositions
into a simplified form in context, thereby facilitating proof.

The application of a natural deduction rule is often preceded or accompanied by
normalisation, enabling us to keep the proof tractable and modular. This coordi-
nated use of normalisation and deduction ensures that the action remains amenable
to rule application and that the proof steps preserve structure.

In this section, we begin with the necessary definitions and foundational lemmas.
We then present the normalisation laws and the natural deduction rules used to
derive deadlock-freedom results, followed by our integrated proof method.

Definitions and Theorem Wefirst define several operators that facilitate the spec-
ification of the deadlock freedom property for proof.

Definition 6.1 (DF).

DFA ≡ µX. ⊓
α∈A

α → X

This operator defines a action that ensures deadlock freedomover a setA of events.
It uses the least fixed-point operator µX to construct a action that is always ready
to engage in some event from A, and then repeats. As a result, the action never
reaches a state where all progress is blocked, thus ensuring deadlock freedom.

Definition 6.2 (deadlock free).

deadlock free P ≡ DFΣ ⊑ P

This definition expresses the property of deadlock freedom for P in terms of refine-
ment. It checks whether the action P refines DFΣ, which represents an action that is
always ready to perform an event from Σ. If this refinement holds, it indicates that
P can match the behaviour of DFΣ and thus does not get stuck, ensuring deadlock
freedom.

Definition 6.3 (GlobalNdet iterations).

DFIA(P) ≡
l

i∈{0<..}

(
li

α∈A

α → P)

The operator DFIA, which stands for Deadlock Freedom Inductive, defines a gen-
eralised iteration over a set of events Aby allowing P to be prefixed by any finite
number of nondeterministic choices. The iteration index i ∈ {0 < ..} determines the
nesting depth of the prefixing: i layers of nondeterministic choices are applied in
sequence. At each layer, a nondeterministic choice over all possible events α ∈ A is
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made, forming a prefix α →. The resulting structure can be viewed as an i-fold iter-
ated prefixing, producing a finite, but arbitrarily long, sequence of nondeterministic
interactions before executing P.

Definition 6.4 (GlobalNdet iterations star).

DFI∗A(P) ≡
l
i∈N

(
li

α∈A

α → P)

This operator generalises DFIA(P) by allowing zero or more layers of nondetermin-
istic prefixing. The iteration index i ∈ N allows the iteration to start from i = 0,
meaning the action may perform zero or more prefix interactions before executing
P. For i = 0, the action behaves as P immediately; for i > 0, an i-fold sequence of
nondeterministic choices over events α ∈ A is performed first. Hence, the operator
expresses behaviours where the action may optionally delay P through an arbitrary
number of interactions.

Theorem 5 (DFI FD imp ddlf).

DFIΣ(P) ⊑ P⇒ deadlock free P

This theorem establishes a fundamental property of the DFIΣ operator. Specifi-
cally, it asserts that if an action P is capable of refining the behaviour DFIΣ(P), then
P is guaranteed to be deadlock-free. Intuitively, this holds because DFIΣ(P) repre-
sents processes that can engage in any number of interactions without blocking:
after each prefix, the system remains ready to continue. Thus, DFIΣ(P) is inherently
deadlock-free. Since P refines DFIΣ(P), it cannot introduce deadlocks that are ab-
sent in DFIΣ(P). Therefore, P must also be deadlock-free, as refinement preserves
deadlock freedom in this case.

Normalisation Lemmas We define a proof method named normalisation to au-
tomate structural normalisation of actions. Its purpose is to eliminate high-level
syntactic constructs such as guards, external choice, and sequencing by rewriting
them into a simplified core form. The method uses a collection of algebraic equiv-
alence lemmas described below to flatten and standardise the structure of actions
systematically. This normalised form is better suited for reasoning.

The normalisation lemmas provide algebraic rewrite rules, allowing actions to be
simplified or brought to a standard form. They are not used to derive semantic
properties directly, but are essential for applying deduction rules.

Lemma 1 (bi extchoice norm).

b & P □ c & Q = □
i∈{0,1}

(if i = 0 then b else c) & (if i = 0 then P else Q)

A binary guarded external choice can be uniformly represented as an indexed ex-
ternal choice over a finite set. This is useful for unifying patterns and applying
general rules over indexed structures.
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Lemma 2 (biextchoic norm).(
□

i∈{0...n}
b(i) & P(i)

)
□ c & Q =

□
i∈{0...n+1}

(
if i ≤ n then b(i) else c

)
&
(
if i ≤ n then P(i) else Q

)
This lemma shows that an external choice over a range of guarded branches can be
extended by one additional guarded branch and uniformly rewritten as an indexed
external choice over an enlarged set. It enables reasoning about binary or incre-
mental additions to a nondeterministic choice construct using a uniform, index-
driven representation — useful for automation and rule application.

Lemma 3 (biextchoic norm nguard prefix).(
□

i∈{0...n}
b(i) & P(i)

)
□ a→ Q =

□
i∈{0...n+1}

(
if i ≤ n then b(i) else True

)
&
(
if i ≤ n then P(i) else a→ Q

)
This lemma demonstrates how to integrate a prefixed action a→ Q, which does not
have an explicit guard, into a uniform indexed guarded external choice. By extend-
ing the index range from {0 . . .n} to {0 . . .n+1}, we can incorporate the unguarded
prefixed action as a special case where the guard is set to the always-true condition
True. This transformation is essential in normalisation steps where all branches of
an external choice need to be brought into the same syntactic and semantic form
for structural processing, reasoning, or tool-based refinement.

We also use three lemmas to normalise the sequence operator.

Lemma 4 (read Seq).

c ?a ∈ A→ P(a) ; Q = c ?a ∈ A→ (P(a) ; Q)

This rule expresses that input-prefixed sequencing distributes over the prefix. That
is, sequencing Q after an input-prefixed choice is equivalent to sequencing Q after
each branch of that choice.

Lemma 5 (write Seq).

c !a→ P ; Q = c !a→ (P ; Q)

This lemma shows that sequencing Q after an output-prefixed action c!a → P is
equivalent to distributing the sequencing inside the prefix: first perform the output,
then continue with P;Q.

Lemma 6 (write0 Seq).

a→ P ; Q = a→ (P ; Q)

This lemma shows that the sequencing operator distributes over a prefix. Perform-
ing event a, then proceeding with P;Q, is semantically equivalent to first executing
a→ P, and then sequencing Q into the continuation.
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Natural Deduction Rules With the action model normalised, we now introduce
the rules for proving the deadlock freedom. These rules support the derivation of
semantic properties, such as deadlock-freedom, through structured, logic-driven
proof steps. Many of these are based on stepwise refinement.

Lemma 7 (df step param intro).

Γ⊢∀ x. P(x) = Q(x) Γ⊢∀ x. DFIΣ
(

⊓
x∈Σ

P(x)

)
⊑ Q(x)

(DfStepParam)

Γ⊢deadlock free

(
⊓
x∈Σ

P(x)

)

This rule states that under context Γ, if for all x, P(x) is equal toQ(x), andDFIΣ

(
⊓
x∈Σ

P(x)

)
is refined by each correspondingQ(x), then the internal choice over all P(x), written
as ⊓

x∈Σ
P(x), is deadlock free.

This lemma is particularly useful for proving the deadlock freedom of parametrised
systems. Instead of proving directly that the external choice over all components
is deadlock free, one can (1) express each component P(x) as an equivalent form
Q(x), and (2) show that a global iterative refinement structure si refined by each
such Q(x). Once these steps are completed, this rule provides a way to conclude
that the system as a whole does not deadlock as required.

Lemma 8 (prefix proving Mndetprefix ref).

Γ⊢a ∈ B Γ⊢P(a) ⊑ R
(Prefix-Intro)

Γ⊢⊓ a ∈ B→ P(a) ⊑ a→ R

There are two premises in this lemma:

• Γ⊢a ∈ B, means that under context Γ, the name a is an element of the set B.

• Γ⊢P(a) ⊑ R, means that under the same context Γ, the action P(a) is refined
by R in the Failures-Divergences semantics.

The rule expresses that if each possible prefixed P(a) (for a ∈ B) individually is
refined by R, then the internal choice over the set B is refined by the single prefix
leading toR. In other words, a uniform refinement of all branches implies refinement
of the overall nondeterministic prefix structure.

Lemma 9 (prefix proving Mndetprefix UNIV ref). This is a specialisation of Prefix-
Intro with B = Σ.

Lemma 10 (one step ahead).

Γ⊢⊓ a ∈ Σ → DFI∗Σ (P) ⊑ Q
Γ⊢DFIΣ (X) ⊑ Q

Γ⊢DFIΣ (P) ⊑ Q
Γ⊢⊓ a ∈ Σ → DFI∗Σ (P) ⊑ Q
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Statement:

⊓ a ∈ Σ → DFI∗Σ (P) ⊑ Q ⇐⇒ DFIΣ (P) ⊑ Q

This lemma states that Q refining an internal choice over all prefixed versions of
DFI∗Σ (P) (one step ahead) is equivalent to refining DFIΣ (P), the standard action
iteration (at least one step).

Lemma 11 (generalised refine guarded extchoice).

Γ⊢∃ i ∈ I. b(i) Γ⊢∀ i ∈ I. b(i) ⇒ ⊓ a ∈ Σ → X ⊑ P(i)
(Guarded-ExtChoice)

Γ⊢⊓ a ∈ Σ → X ⊑ □
i∈I
b(i) & P(i)

This rule expresses that, under context Γ, if there exists some i ∈ I such that the
guard b(i) holds, and for every such i, the internal choice action ⊓ a ∈ Σ → X is
refined by P(i). The same refinement holds for the guarded external choice over all
i ∈ I. This lemma is useful when you wish to prove refinement of a guarded external
choice by showing refinement for each branch individually. The existence premise
ensures that at least one guard is enabled, making the overall action deadlock-
free.

Lemma 12 (eat lemma).

Γ⊢DFI∗Σ (P) ⊑ Q
(Eat)

Γ⊢DFI∗Σ(P) ⊑ a→ Q

This rule expresses that if under context Γ, the iteration DFI∗Σ(P) is refined byQ, then
if we add a prefix a in front of Q, the iteration DFI∗Σ(P) is still refined by a→ Q.

Lemma 13 (no step refine).

(No-Step)
Γ⊢DFI∗Σ(P) ⊑ P

This lemma states that an iteration DFI∗Σ(P) is always refined by P itself. The rea-
soning is intuitive: since DFI∗Σ(P) may behave like P, or iterate multiple times then
behave like P, it is more permissive than P.

Lemma 14 (write proving Mndetprefix ref).

Γ⊢c(a) ∈ B Γ⊢P(c(a)) ⊑ R
(MndetPrefix)

Γ⊢ ⊓
a∈B

a→ P(a) ⊑ c!a→ R

This rule states that if c(a) ∈ B, and the action P(c(a)) is refined by some action
R, then the nondeterministic choice over all a ∈ B, prefixed by the event a and
followed by P(a), is refined by the deterministic communication c!a→ R.

Lemma 15 (write proving Mndetprefix UNIV ref). This is a specialisation of Mn-
detPrefix, with B = Σ.

Lemma 16 (read proving Mndetprefix ref).
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inj on c A c ‘ A ⊆ B A ̸= ∅ Γ⊢∀a ∈ A. P(c a) ⊑ Q(a)
(Read-MndetPrefix-Ref)

Γ⊢ ⊓
a∈B

a→ P(a) ⊑ c?a ∈ A→ Q(a)

This rule supports refinement reasoning for input prefixes with value-dependent
behaviour. It states that if c is injective over a nonempty set A, maps into a superset
B, and for every a ∈ A, Q(a) refines P(c a), then c?a ∈ A → Q(a) refines the internal
choice over B of a → P(a). This captures the idea that a deterministic input-driven
action can refine a nondeterministic prefix structure, provided that each branch
satisfies the required relation under the mapping.

Lemma 17 (GlobalNdet refine no step).

Γ⊢a ∈ A
(GlobalNdet-NoStep)

Γ⊢DFI∗Σ
(

⊓
x∈Σ

P(x)

)
⊑ P(a)

This rule states that for any a ∈ A, any individual behaviour P(a) refines the global

iterative nondeterministic action DFI∗Σ

(
⊓
x∈Σ

P(x)

)
. This is useful for decomposing

refinement obligations involving nondeterministic iteration into simpler checks over
individual branches.

Lemma 18 (interrupt refine).

Γ⊢DFI∗Σ (X) ⊑ P Γ⊢Q = a→ Q
(Interrupt-Ref)

Γ⊢DFI∗Σ (X) ⊑ Q△P

This rule expresses that if, under context Γ, the iteration DFI∗Σ (X) is refined by some
P, andQ is defined as an infinite prefix loopQ = a→ Q, then the iteration DFI∗Σ (X) is
also refined by Q△P. In addition to general-purpose structural laws, we also intro-
duce two lemmas specialised for SSTOP = share →SSTOP, which occurs frequently in
generated models. These lemmas are direct instantiations of Interrupt-Ref, intro-
duced to improve automation.

Lemma 19 (SSTOP refine star).

Γ⊢DFI∗Σ (X) ⊑ P
(Interrupt-Ref-SSTOP-star)

Γ⊢DFI∗Σ (X) ⊑ SSTOP△P

Lemma 20 (SSTOP refine).

Γ⊢DFIΣ (X) ⊑ P
(Interrupt-Ref-SSTOP)

Γ⊢DFIΣ (X) ⊑ SSTOP△P

Specifically, in these lemmas, the abstract infinite loop Q = a → Q is replaced by
the concrete definition SSTOP = share→ SSTOP.

In our models, SSTOP frequently appears as the left-hand side of an interrupt expres-
sion. Rather than applying Interrupt-Ref manually and unfolding the definition each
time, these lemmas allow this reasoning to be captured directly. This not only sim-
plifies proof scripts but also improves automation by enabling the refinement tactic
to match and discharge such interrupt structures without auxiliary steps.
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Figure 22: RoboChart model for the navigation robot MAPLE-K plan phase

We are now in a position to define a proof method named deadlock_free to auto-
mate proof of deadlock freedom. This is described next.

Automatic proof.

(1) Proof goal. To show that an entire action is deadlock-free, we prove that an
action of the form

⊓n ∈ Σ. P(n)

is deadlock-free, that is, for every arbitrary n, P(n) does not lead to a state where no
events are possible. This result ensures that, regardless of which branch is selected,
the action can always proceed.

(2) Proof method. A proof method is defined using the lemmas discussed above
to realise the automatic proof of deadlock freedom. The proofmethod is composed
of three steps. The first step applies an induction rule (Lemma 6.7); the second step
simplifies the model using the normalisation rules, and the last proves deadlock
freedom using the natural deduction rules. The proof method is defined according
to the pattern of the transition behaviour of a RoboChart state machine.

Mechanisation uses Isabelle’s classical reasoner to apply laws, and we may need
a fourth step to apply Sledgehammer (a powerful native proof tactic native to Is-
abelle) to any residual proof goals (verification conditions).

(3) Proof example. Wehave applied our proofmethod to the transition behaviour
of the RoboChart state machine for the MAPLE-K plan phase of the navigation
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Figure 23: The RoboChart model of MakePlan state, enriched with details

robot. The state machine shown in Fig. 22 is automatically generated from the
RoboArchmodel in Fig. 3. When enriching thatmachine to consider the application-
specific features of the navigation case study, we add states and transitions within
the MakePlan state, among others, to define how to construct plans. The enriched
RoboChart definition for the state MakePlan is shown in Fig. 23.

In the CalculateRotations state, the software calculates theminimum andmaximum
rotations required to mitigate LiDAR occlusion (details omitted). This is followed
by guarded transitions that enumerate the different rotation cases the robot should
perform to optimally cover the required range.

The IsaCircus model Trans_MakePlan_Adaptation_Plan for the transition behaviour
of the MakePlan state is automatically generated from the RoboChart model of
MakePlan as shown in Appendix F. We first applied the proof method deadlock_free
to Trans_MakePlan_Adaptation_Plan, and found that the goal cannot be discharged.
Therefore, we have applied another proof method find_counterexample to find a
counterexample showing the cause of the deadlock. The result is shown in Fig. 24.

Figure 24: The counterexample causing the deadlock of MakePlan in Isabelle/HOL

The counterexample appears below the line “Quickcheck found a counter example”.
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Figure 25: The RoboChart model of the stateMakePlan, updated with correct tran-
sition conditions (highlighted)

In the line a__ = real_of_rat (Fract (-1)1), the variable name a__ is automatically
generated by Isabelle as an internal alias for the model variableminRotation; more-
over, Fract (-1)1 represents the rational number -1/1, i.e., �1, and real_of_rat con-
verts this rational number into a real number in Isabelle. Thus, the expression
real_of_rat (Fract (-1)1) denotes the real number -1, and this line defines that
minRotation = -1. Similarly, the line b__ = real_of_rat (Fract 0 1) defines thatmaxRo-
tation = 0. In the last line, the variable st_var represents the current state of the
system. Here, it indicates that the behaviour is in the CalculateRotations state of
theMakePlan state of the Adaptation Planmachine. Providing a description of this
counterexample in terms of the elements of the RoboChart model, avoiding terms
and variables internal to Isabelle, is a simple piece of future work.

Intuitively, the counterexample indicates that the case whereminRotation is -1 and
maxRotation is 0 is not covered by any of the transition conditions in CalculateRo-
tations. This case should be covered by the transition to PlanNegativeRotation,
which handles the case where the entire occlusion is on one side of the robot, re-
quiring an anticlockwise turn. The transition guard considers that both rotations
should be negative (indicating the anticlockwise direction) and not equal (as that
is handled by another case) for this to be the case, but it does not account for the
possibility that one rotation may be zero.

This can be easily corrected by requiring maxRotation to be less than or equal to
zero, and we can also see that a similar error holds for the dual case in the transition
to PlanPositiveRotation, corrected by requiring minRotation to be greater than or
equal to zero. The updated RoboChart model is in Fig. 25.
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We have applied the proof method deadlock_free to the updated model, and now
the deadlock freedom of MakePlan is proved.

6.6 Final considerations

This chapter has presented a rich collection of tools that support the foundational
work being carried out in RoboSAPIENS. With these tools, we can use those foun-
dations to actually support the development work in the other workpackages.

We can define and reason about conceptual architectures that use a MAPLE-K pat-
tern. We can consider RoboChart models for those patterns that involve AI com-
ponents. Finally, we can prove properties of the models. All this will integrate well
with efforts for legitimisation and trustworthiness checking. The complementary
results in Deliverable D1.2 strengthen the connection.
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7 Conclusions

We have presented our approach to modelling, verifying, and implementing adap-
tive robotic systems using the MAPLE-K pattern. Our work formalises MAPLE-K
in RoboArch, providing support for platform-independent architectural modelling
and translation to RoboChart for formal analysis and verification. Our formalisation
covers several variations, including the traditional MAPE-K.

The verified RoboChart model can be mapped onto an AADL model (Deliverable
5.2), which is enriched to describe a particular platform for deployment. From
AADL and RoboChart, an implementation can be developed via automatic code
generation. Our work offers a complete pathway from architectural modelling
through to code. By utilising our software platform to implement adaptive, trust-
worthy systems, we can preserve the structure and concepts of RoboArch high-
level MAPLE-K (or MAPE-K, as a special case) models at the code level.

For modelling and reasoning about intelligent systems, our approach is supported
by automated tools and a graphical modelling system. This enables and supports
engineering based on the logic of the software, independent of the dynamics of the
robotic system or other considerations of the details of the software, which makes
our work distinct in the area of system-level ANN verification.

For uncertainty quantification, we have implemented a method called Monte-Carlo
DropBlock, which is designed explicitly for CNN networks. We are applying it to the
DTI case study. Work on the PAL case study is ongoing. We have also explored the
use of Large Language Models (LLMs) to identify uncertainties, with experiments
showing promising results and getting support from practitioners.

7.1 Future work in the scope of RoboSAPIENS

In future work, we will consider additional RoboSAPIENS case studies, extending
the architectural patterns as required. Currently, we are working on the DTI case
study: Deliverable 4.1. More patternswill lead to extensions of themeta-model, well-
formedness conditions, and model-to-model transformation. A priority is defining
patterns for the use of the trustworthiness checker.

The primary focus of future work, however, is the exploitation of the architecture
for verification. This involves taking advantage of the traceability that our approach
affords from code to conceptual architecture. This enables compositional reason-
ing about adaptive systems. The semantic model of RoboChart is based on CSP
process algebra [Ros11], whose constructs are compositional concerning refine-
ment. Since the structure of the model’s components is preserved in the code, we
can utilise this compositionality to reason about changes in the code.

Regarding reasoning about ANN-enabled systems, we have three lines of work to
pursue. The first is the complete formalisation andmechanisation of the verification
approach presented here. The second is its application to RoboSAPIENS studies.
The final one is the investigation of our approach to relearning.

Regarding the identification and quantification of uncertainty, we will conduct a
large-scale industrial evaluation to collect insights related to uncertainty from a
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broader range of use cases. Based on these findings and literature analysis, we will
develop a comprehensive uncertainty taxonomy for self-adaptive robotics. Sec-
ond, we will develop an LLM-based framework for automated identification and
management of uncertainties. We will assess the usefulness and effectiveness of
this framework for different types of self-adaptive robotic systems. We will also
investigate the applicability of the UQ method and metrics to other case studies,
such as the DL-based digital twins of ships and the DL-based anomaly detection
in robotic systems use cases from RoboSAPIENS. Fifth, we will employ other UQ
methods, such as Deep Ensembles [LPB17], and develop novel UQmetrics to quan-
tify uncertainty in the environments of robots and DL models. Next, a holistic ap-
proach to uncertainty quantification will be developed, considering both environ-
mental uncertainty and DL models. Finally, we will identify the factors contributing
to uncertainty and then design methods to reduce overall uncertainty.

Regarding IsaCircus, we will apply the approach to several case studies, from Ro-
boSAPIENS and others available in RoboStar, demonstrating its effectiveness in
realistic modelling scenarios. In addition to the deadlock-freedom proofs, we will
include the verification of further properties such as invariants and assertion satis-
faction. We’ll look into extending the deadlock freedom proof method to handle
more components of RoboChart, e.g., state actions.

7.2 Future work beyond the scope of RoboSAPIENS

The MAPE-K community is very active (see Deliverable 3.1). We expect many other
variations of MAPE-K will be proposed. We have concrete plans to extend it to
support the development of robotic software that satisfies normative requirements.
The work we present here provides a solid base to formalise other variations of
MAPE-K and provide verification support for them.

Our work on verifying RoboChart models with ANN components provides a solid
foundation for a rich agenda of future work. We envisage extending the definition
of ANN components to support multiple types of ANN: convolutional, for image
recognition, and transformer or recurrent networks, for time series data. Our se-
mantics naturally allow the definition of multiple types of activation functions.

Further work on the link between process algebras and AI-system reasoning can
enable a rich engineering approach for software that involves AI components. By
employing process algebraic reasoning, we can derive properties regarding the
level of imprecision and its propagation through the software in a high-level and
rigorous manner, enabling tractable compositionality proofs.

Our theory of conformance has also highlighted potential areas for further research,
such as improving methods for generating ϵ approximations and integrating prob-
abilistic reasoning into conformance checking. Additionally, the application of hy-
brid systems theory offers a promising direction for verifying the behaviour of
ANNs in more complex, real-world environments.

Regarding proof, future work will extend the proof method to support the proof of
deadlock freedom with the physical platform in the loop. This will require hybrid
theories. Equally interesting is the proof of deadlock freedom, taking into account
the probabilistic and stochastic behaviour of RoboChart models.
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Our work on uncertainty provides a general approach to identifying the uncertainty
of robotics with LLMs. We foresee potential for LLMs to enhance decision-making
and adaptive behaviour while handling uncertainty in robotics and other complex
systems, particularly in complex and dynamic environments. Regarding uncer-
tainty quantification, future work will explore novel methods for measuring and
interpreting uncertainty in both deep learning models and traditional systems. This
includes extending our framework to support multimodal inputs and enabling do-
main adaptation to enhance interpretability, robustness, and trustworthiness.
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Table 1: Selected Circus action operators. Here, we use A and B as metavariables
to represent actions, cs to denote a set of channels, e to represent an event, i to
represent an index, and T to represent a finite type. For the replicated (iterated)
operators, A(i) is an action identified i.

Symbol Name Symbol Name

Skip Skip e−→A Prefix

A J | cs | K B Parallel Composition Jcs K i : T • A(i) Replicated Parallel
A ;Q Sequential Composition ; i : T • A(i) Replicated Sequential

Composition

c?x−→A Input c!e−→A Output

(c)NA Guarded Action A \ cs Hiding

A[e := e1] Renaming A
a
B Interrupt

A 9 B Interleaving
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A Translation Rules from RoboArch to RoboChart for the
MAPLEK pattern

Rule 1. Interfaces for a MAPLEK Layer (Rule 1 in Section 2.4.2)
MAPLEKLayerToInterfaces(ammkl : Layer) : Set(Interface) =

ammkl.name Inputs

for ev in inputs

ev.name: ev.type
end for

ammkl.name Outputs

for ev in outputs

ev.name: ev.type
end for

ammkl.name InputVars

for ev in inputs

ev.name data: ev.type
end for

ammkl.name InputFlags

for ev in inputs

ev.name flag: boolean
end for


∪ RecordedDataInterfaces(ammkl.pattern.monitor.recordedData,ammkl.pattern)
∪
∪
{analyse : ammkl.pattern.analyse •
AnalysisResultsInterfaces(analyse.analysisResults,ammkl.pattern,ammkl.name)}

∪
∪
{plan : ammkl.pattern.plan •
PlanDataInterfaces(plan.planData,ammkl.pattern,ammkl.name)}

∪
∪
{legitimate : ammkl.pattern.legitimate •
VerificationInfoInterfaces(legitimate.verificationInfo,ammkl.pattern)}

where

inputs = ammkl.pattern.monitor.inputs

outputs = ammkl.pattern.execute.outputs

provided

ammkl.pattern instanceof MAPLEK
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Rule 2. Interfaces for Recorded Data Variables (Rule 2 in Section 2.4.2)

RecordedDataInterfaces(rdvr : Set(Variable),pat : MAPLEK,name : String) =

name RecordedData

for var in rdvr
var.name: var.type

end for

name RecordedData events

for var in rdvr
var.name: var.type

get var.name
end for

name RecordedData set events

for var in rdvr
set var.name: var.type

end for

name RecordedData ext events

for var in rdvr
var.name ext : var.type

get var.name ext
end for



∪
∪


a : pat.analyse •

name RecordedData Analyse events

for var in rdvr
var.name Analyse: var.type

get var.name Analyse
end for



∪
∪


p : pat.plan •

name RecordedData Plan events

for var in rdvr
var.name Plan: var.type

get var.name Plan
end for



∪
∪


l : pat.legitimate •

name RecordedData Legitimate events

for var in rdvr
var.name Legitimate : var.type

get var.name Legitimate
end for


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Rule 3. Interfaces for Analysis Results Variables

AnalysisResultsInterfaces(arvr : Set(Variable),pat : MAPLEK,name : String) : Set(Interface) =

name AnalysisResults

for var in arvr
var.name: var.type

end for

name AnalysisResults events

for var in arvr
var.name: var.type

get var.name: var.type
end for

name AnalysisResults set events

for var in arvr
set var.name: var.type

end for

name AnalysisResults ext events

for var in arvr
var.name ext : var.type

get var.name ext : var.type
end for



∪
∪


a : pat.plan •

name AnalysisResults Plan events

for var in arvr
var.name Plan: var.type

get var.name Plan: var.type
end for



∪
∪


l : pat.legitimate •

name AnalysisResults Legitimate events

for var in arvr
var.name Legitimate : var.type

get var.name Legitimate : var.type
end for



Rule 4. Interfaces for Plan Data Variables

PlanDataInterfaces(pdvr : Set(Variable),pat : MAPLEK,name : String) : Set(Interface) =

name PlanData

for var in rdvr
var.name: var.type

end for

name PlanData events

for var in rdvr
var.name: var.type

get var.name: var.type
end for

name PlanData set events

for var in rdvr
set var.name: var.type

end for

name PlanData ext events

for var in rdvr
var.name ext : var.type

get var.name ext : var.type
end for



∪
∪


l : pat.legitimate •

name PlanData Legitimate events

for var in rdvr
var.name Legitimate : var.type

get var.name Legitimate : var.type
end for



∪
∪



name PlanData Execute events

for var in rdvr
var.name Execute: var.type

get var.name Execute: var.type
end for


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Rule 5. Interfaces for Verification Info Variables

VerificationInfoInterfaces(vivr : Set(Variable),pat : MAPLEK,name : String) : Set(Interface) =

name VerificationInfo

for var in vivr
var.name: var.type

end for

name VerificationInfo events

for var in vivr
var.name: var.type

get var.name: var.type
end for

name VerificationInfo set events

for var in vivr
set var.name: var.type

end for

name VerificationInfo ext events

for var in vivr
var.name ext : var.type

get var.name ext : var.type
end for



∪
∪


l : pat.plan •

name VerificationInfo Plan events

for var in vivr
var.name Plan : var.type

get var.name Plan : var.type
end for



Rule 6. Machines and Connections for a MAPLEK layer (Rule 3 in Section 2.4.2)
MAPLEKPatternToMachinesAndConnections(ammkl : Layer) : (Set(StateMachine),Set(Connection)) =

if #ammkl.pattern.legitimate = 0 then

if #ammkl.pattern.plan = 0 then

if #ammkl.pattern.analyse = 0 then MEKMachinesAndConnections(ammkl)

else MAEKMachinesAndConnections(ammkl)

end if

else

if #ammkl.pattern.analyse = 0 then MEPKMachinesAndConnections(ammkl)

else MAPEKMachinesAndConnections(ammkl)

end if

end if

else

if #ammkl.pattern.analyse = 0 then MPLEKMachinesAndConnections(ammkl)

else MAPLEKMachinesAndConnections(ammkl)

end if

end if

provided

ammkl.pattern instanceof MAPLEK
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Rule 7. Machines and Connections for a MAPLEK layer with all components (Rule 4
in Section 2.4.2)

MAPLEKMachinesAndConnections(amptn : MAPLEK) : (Set(StateMachine),Set(Connection)) =

stm ref0 =

monitor

processedData
: amptn.monitor.processedDataType

for ev in amptn.monitor.inputs
ev.name : ev.type

end for

stm ref1 =

analyse

processedData
: amptn.monitor.processedDataType

anomalyFound

adaptationCompleted

stm ref2 =

plan
requestPlan planningCompleted

planRejected

stm ref3 =

legitimate

verifyPlan

planAccepted

planRejected

stm ref4 =

execute

planAccepted

for ev in amptn.execute.outputs
ev.name : ev.type

end for

adaptationCompleted

stm ref5 =

knowledge

for ev in amptn.monitor.inputs
ev.name : ev.type

end for

for ev in amptn.execute.outputs
ev.name : ev.type

end for

∪MAPLEKKnowledgeExternalConnections(amptn)
∪MAPLEKMonitorKnowledgeConnections(amptn)
∪MAPLEKAnalyseKnowledgeConnections(amptn)
∪MAPLEKPlanKnowledgeConnections(amptn)
∪MAPLEKLegitimateKnowledgeConnections(amptn)
∪MAPLEKExecuteKnowledgeConnections(amptn)

where

monitor = MonitorStateMachine(amlyr.pattern.monitor,amlyr.pattern,amlyr.name)

analyse = AnalyseStateMachine(amlyr.pattern.analyse,amlyr.pattern,amlyr.name)

plan = PlanStateMachine(amlyr.pattern.plan,amlyr.pattern,amlyr.name)

legitimate = LegitimateStateMachine(amlyr.pattern.legitimate,amlyr.pattern,amlyr.name)

execute = ExecuteStateMachine(amlyr.pattern.execute,amlyr.pattern,amlyr.name)

knowledge = KnowledgeStateMachine(amlyr.pattern,amlyr.name)
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Rule 8. Machines and Connections for a MAPLEK layer with no LegitimateComponent

MAPEKMachinesAndConnections(amptn : MAPLEK) : (Set(StateMachine),Set(Connection)) =

stm ref0 =

name Monitor

processedData
: amptn.monitor.processedDataType

for ev in amptn.monitor.inputs
ev.name : ev.type

end for

stm ref1 =

name Analyse

processedData
: amptn.monitor.processedDataType

anomalyFound

adaptationCompleted

stm ref2 =

name Plan

requestPlan

planningCompleted

stm ref4 =

name Execute

planAccepted

for ev in amptn.execute.outputs
ev.name : ev.type

end for

adaptationCompleted

stm ref5 =

name Knowledge

for ev in amptn.monitor.inputs
ev.name : ev.type

end for

for ev in amptn.execute.outputs
ev.name : ev.type

end for

∪MAPLEKKnowledgeExternalConnections(amptn)
∪MAPLEKMonitorKnowledgeConnections(amptn)
∪MAPLEKAnalyseKnowledgeConnections(amptn)
∪MAPLEKPlanKnowledgeConnections(amptn)
∪MAPLEKExecuteKnowledgeConnections(amptn)
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Rule 9. Connections from the Knowledge State Machine to the Controller

MAPLEKKnowledgeExternalConnections(amptn : MAPLEK) : (Set(StateMachine),Set(Connection)) =

stm ref5=

Knowledge

for var in rdvrs
var.name ext : var.type

end for

for var in rdvrs
get var.name ext : var.type

end for

for var in arvrs
var.name ext : var.type

end for

for var in arvrs
get var.name ext : var.type

end for

for var in pdvrs
var.name ext : var.type

end for

for var in pdvrs
get var.name ext : var.type

end for

for var in vivrs
var.name ext : var.type

end for

for var in vivrs
get var.name ext : var.type

end for

for var in rdvrs
var.name : var.type

end for

for var in rdvrs
get var.name : var.type

end for

for var in arvrs
var.name : var.type

end for

for var in arvrs
get var.name : var.type

end for

for var in pdvrs
var.name : var.type

end for

for var in pdvrs
get var.name : var.type

end for

for var in vivrs
var.name : var.type

end for

for var in vivrs
get var.name : var.type

end for

where

rdvrs = amptn.monitor.recordedData

arvrs =
∪
{a : amptn.analyse • a.analysisResults}

pdvrs =
∪
{p : amptn.plan • p.planData}

vivrs =
∪
{l : amptn.legitimate • l.verificationInfo}
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Rule 10. Connections between the Knowledge and Monitor State Machines

MAPLEKMonitorKnowledgeConnections(amptn : MAPLEK) : (Set(StateMachine),Set(Connection)) =

stm ref0=

Monitor

stm ref5=

Knowledge

for var in rdvrs
var.name : var.type

end for

for var in rdvrs
get var.name : var.type

end for

for var in rdvrs
set var.name : var.type

end for

for var in rdvrs
var.name : var.type

end for

for var in rdvrs
get var.name : var.type

end for

for var in rdvrs
set var.name : var.type

end for

where

rdvrs = amptn.monitor.recordedData

Rule 11. Connections between the Knowledge and Analyse State Machines

MAPLEKAnalyseKnowledgeConnections(amptn : MAPLEK) : (Set(StateMachine),Set(Connection)) =

stm ref0=

Analyse

stm ref5=

Knowledge

for var in arvrs
var.name : var.type

end for

for var in arvrs
get var.name : var.type

end for

for var in arvrs
set var.name : var.type

end for

for var in rdvrs
var.name Monitor : var.type

end for

for var in rdvrs
get var.name Monitor : var.type

end for

for var in arvrs
var.name : var.type

end for

for var in arvrs
get var.name : var.type

end for

for var in arvrs
set var.name : var.type

end for

for var in rdvrs
var.name : var.type

end for

for var in rdvrs
get var.name : var.type

end for

where

rdvrs = amptn.monitor.recordedData

arvrs =
∪
{a : amptn.analyse • a.analysisResults}
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Rule 12. Connections between the Knowledge and Plan State Machines

MAPLEKPlanKnowledgeConnections(amptn : MAPLEK) : (Set(StateMachine),Set(Connection)) =

stm ref0=

Plan

stm ref5=

Knowledge

for var in pdvrs
var.name : var.type

end for

for var in pdvrs
get var.name : var.type

end for

for var in pdvrs
set var.name : var.type

end for

for var in rdvrs
var.name Monitor : var.type

end for

for var in rdvrs
get var.name Monitor : var.type

end for

for var in arvrs
var.name Analyse : var.type

end for

for var in arvrs
get var.name Analyse : var.type

end for

for var in vivrs
var.name Legitimate : var.type

end for

for var in vivrs
get var.name Legitimate : var.type

end for

for var in pdvrs
var.name : var.type

end for

for var in pdvrs
get var.name : var.type

end for

for var in pdvrs
set var.name : var.type

end for

for var in rdvrs
var.name : var.type

end for

for var in rdvrs
get var.name : var.type

end for

for var in arvrs
var.name : var.type

end for

for var in arvrs
get var.name : var.type

end for

for var in vivrs
var.name : var.type

end for

for var in vivrs
get var.name : var.type

end for

where

rdvrs = amptn.monitor.recordedData

arvrs =
∪
{a : amptn.analyse • a.analysisResults}

pdvrs =
∪
{p : amptn.plan • p.planData}

vivrs =
∪
{l : amptn.legitimate • l.verificationInfo}
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Rule 13. Connections between the Knowledge and Legitimate State Machines

MAPLEKLegitimateKnowledgeConnections(amptn : MAPLEK) : (Set(StateMachine),Set(Connection)) =

stm ref0=

Legitimate

stm ref5=

Knowledge

for var in vivrs
var.name : var.type

end for

for var in vivrs
get var.name : var.type

end for

for var in vivrs
set var.name : var.type

end for

for var in rdvrs
var.name Monitor : var.type

end for

for var in rdvrs
get var.name Monitor : var.type

end for

for var in arvrs
var.name Analyse : var.type

end for

for var in arvrs
get var.name Analyse : var.type

end for

for var in pdvrs
var.name Plan : var.type

end for

for var in pdvrs
get var.name Plan : var.type

end for

for var in vivrs
var.name : var.type

end for

for var in vivrs
get var.name : var.type

end for

for var in vivrs
set var.name : var.type

end for

for var in rdvrs
var.name : var.type

end for

for var in rdvrs
get var.name : var.type

end for

for var in arvrs
var.name : var.type

end for

for var in arvrs
get var.name : var.type

end for

for var in pdvrs
var.name : var.type

end for

for var in pdvrs
get var.name : var.type

end for

where

rdvrs = amptn.monitor.recordedData

arvrs =
∪
{a : amptn.analyse • a.analysisResults}

pdvrs =
∪
{p : amptn.plan • p.planData}

vivrs =
∪
{l : amptn.legitimate • l.verificationInfo}
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Rule 14. Connections between the Knowledge and Execute State Machines

MAPLEKExecuteKnowledgeConnections(amptn : MAPLEK) : (Set(StateMachine),Set(Connection)) =

stm ref4=

Execute

stm ref5=

Knowledge

for var in pdvrs
var.name Plan : var.type

end for

for var in pdvrs
get var.name Plan : var.type

end for

for var in pdvrs
var.name : var.type

end for

for var in pdvrs
get var.name : var.type

end for

where

pdvrs =
∪
{p : amptn.plan • p.planData}

Rule 15. Monitor State Machine (Rule 5 in Section 2.4.2)

MonitorStateMachine(mon : MonitorComponent,amptn : MAPLEK,name : String) : StateMachine =

name Monitor

name Inputs
name InputVariables
name InputFlags
name RecordedData events
name RecordedData set events
outputData : mon.processedDataType

dataToSend : boolean
processedData : mon.processedDataType

Initialise ReadInput ProcessData

RecordDataSendData

for input in mon.inputs
input.name?input.name data
/input.name flag = true

end for

[not dataToSend]

[dataToSend]

/processedData!outputData;
dataToSend = false
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Rule 16. Analyse State Machine (Rule 6 in Section 2.4.2)

AnalyseStateMachine(analyse : AnalyseComponent,amptn : MAPLEK,name : String) : StateMachine =

name Analyse

name AnalysisResults events
name AnalysisResults set events
name RecordedData events
data : amptn.monitor.processedDataType

anomalyDetected : boolean
awaitingAdaptation : boolean

processedData : amptn.monitor.processedDataType

anomalyFound
adaptationCompleted

Initialise WaitForData

AnalyseAnomalyAnalysisComplete

processedData?data

[not anomalyDetected]

[anomalyDetected]
/anomalyFound;

awaitingAdaptation = true;
anomalyDetected = false

adaptationCompleted
/awaitingAdaptation = false
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Rule 17. Plan State Machine (Rule 7 in Section 2.4.2)

PlanStateMachine(plan : PlanComponent,amptn : MAPLEK,name : String) : StateMachine =

if #amptn.legitimate = 0 then

name Plan

name PlanData events
name PlanData set events
name RecordedData events
planningCompleted

if # amptn.analyse ̸= 0 then

name AnalysisResults events
requestPlan

else
data : amptn.monitor.processedDataType

processedData : amptn.monitor.processedDataType
end if

Initialise

WaitForSignal MakePlan

PlanMade

if # amptn.analyse ̸= 0 then
requestPlan

else
processedData?data

end if

planningCompleted

else

name Plan

name PlanData events
name PlanData set events
name RecordedData events
name VerificationInfo events
planningCompleted
planRejected

if # amptn.analyse ̸= 0 then

name AnalysisResults events
requestPlan

else
data : amptn.monitor.processedDataType

processedData : amptn.monitor.processedDataType
end if

Initialise

WaitForSignal MakePlan

PlanMade

WaitForVerification

Replan

if #amptn.analyse ̸= 0 then
requestPlan

else
processedData?data

end if

planningCompleted

planRejected

if #amptn.analyse ̸= 0 then
requestPlan

else
processedData?data

end if

end if
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Rule 18. Legitimate State Machine (Rule 8 in Section 2.4.2)

LegitimateStateMachine(l : LegitimateComponent,amptn : MAPLEK,name : String) : StateMachine =

name Legitimate

name VerificationInfo events
name VerificationInfo set events
name RecordedData events

if # amptn.analyse ̸= 0 then name AnalysisResults events end if

name PlanData events
planLegitimated : boolean

verifyPlan
planAccepted
planRejected

Initialise WaitForSignal PerformVerificationverifyPlan

[planLegitimated]/planAccepted

[not planLegitimated]/planRejected

Rule 19. Execute State Machine (Rule 9 in Section 2.4.2)

ExecuteStateMachine(e : ExecuteComponent,amptn : MAPLEK,name : String) : StateMachine =

name Execute

if # amptn.plan ̸= 0 then name PlanData events end if

name Outputs events
if #(amptn.analyse ∪ amptn.plan) = 0 then

data : amptn.monitor.processedDataType

processedData : amptn.monitor.processedDataType
else

executePlan
end if
if # amptn.analyse ̸= 0 then adaptationCompleted end if

Initialise WaitForSignal SendOutputs

FinishAdaptation

if #(amptn.analyse ∪ amptn.plan) = 0 then
processedData?data

else
executePlan

end if

if #amptn.analyse ̸= 0 then
adaptationCompleted

end if
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Rule 20. Knowledge State Machine (Rule 10 in Section 2.4.2)

KnowledgeStateMachine(amptn : MAPLEK,name : String) : StateMachine =

name Knowledge

name RecordedData
if # amptn.analyse ̸= 0 then name AnalysisResults end if

if # amptn.plan ̸= 0 then name PlanData end if

if # amptn.legitimate ̸= 0 then name VerificationInfo end if

name RecordedData events
name RecordedData set events
name RecordedData ext events

if # amptn.analyse ̸= 0 then name RecordedData Analyse events end if

if # amptn.plan ̸= 0 then name RecordedData Plan events end if

if # amptn.legitimate ̸= 0 then name RecordedData Legitimate events end if
if # amptn.analyse ̸= 0 then

AnalysisResults events
AnalysisResults set events
AnalysisResults ext events

if # amptn.plan ̸= 0 then AnalysisResults Plan eventsend if

if # amptn.legitimate ̸= 0 then AnalysisResults Legitimate events end if
end if
if # amptn.plan ̸= 0 then

PlanData events
PlanData set events
PlanData ext events

if # amptn.legitimate ̸= 0 then PlanData Legitimate events end if

PlanData Execute events
end if
if # amptn.legitimate ̸= 0 then

VerificationInfo events
VerificationInfo set events
VerificationInfo ext events

if # amptn.plan ̸= 0 then VerificationInfo Plan events end if
end if

Knowledge

for v in amptn.monitor.recordedData
get v.name/v.name!v.name

end for

for v in amptn.monitor.recordedData
set v.name?v.name

end for

for v in amptn.monitor.recordedData
get v.name ext/v.name ext!v.name

end for

for v in
∪
{ p: amptn.plan @ amptn.monitor.recordedData }

get v.name Plan/v.name Plan!v.name
end for

for v in
∪
{ l: amptn.legitimate @ amptn.monitor.recordedData }

get v.name Legitimate/v.name Legitimate!v.name
end for

for v in
∪
{ a: amptn.analyse @ amptn.monitor.recordedData }

get v.name Analyse/v.name Analyse!v.name
end for

if # amptn.analyse ̸= 0 then KnowledgeAnalysisResultsTransitions(amptn, name) end if
if # amptn.plan ̸= 0 then KnowledgePlanDataTransitions(amptn, name) end if
if # amptn.legitimate ̸= 0 then KnowledgeVerificationInfoTransitions(amptn, name) end if
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Rule 21. AnalysisResults Transitions for the Knowledge State Machine

KnowledgeAnalysisResultsTransitions(amptn : MAPLEK,name : String) : Set(Transition) =

Knowledge

for v in amptn.analyse.analysisResults
get v.name/v.name!v.name

end for

for v in amptn.analyse.analysisResults
set v.name?v.name

end for

for v in amptn.analyse.analysisResults
get v.name ext/v.name ext!v.name

end for

for v in
∪
{ p: amptn.plan @ amptn.analyse.analysisResults }

get v.name Plan/v.name Plan!v.name
end for

for v in
∪
{ l: amptn.legitimate @ amptn.analyse.analysisResults }

get v.name Legitimate/v.name Legitimate!v.name
end for

Rule 22. PlanData Transitions for the Knowledge State Machine

KnowledgePlanDataTransitions(amptn : MAPLEK,name : String) : Set(Transition) =

Knowledge

for v in amptn.plan.planData
get v.name/v.name!v.name

end for

for v in amptn.plan.planData
set v.name?v.name

end for

for v in amptn.plan.planData
get v.name ext/v.name ext!v.name

end for

for v in
∪
{ l: amptn.legitimate @ amptn.plan.planData }

get v.name Plan/v.name Plan!v.name
end for

for v in amptn.plan.planData
get v.name Execute/v.name Execute!v.name

end for
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Rule 23. VerificationInfo Transitions for the Knowledge State Machine

KnowledgeVerificationInfoTransitions(amptn : MAPLEK,name : String) : Set(Transition) =

Knowledge

for v in amptn.legitimate.verificationInfo
get v.name/v.name!v.name

end for

for v in amptn.legitimate.verificationInfo
set v.name?v.name

end for

for v in amptn.legitimate.verificationInfo
get v.name ext/v.name ext!v.name

end for

for v in
∪
{ p: amptn.plan @ amptn.legitimate.verificationInfo }

get v.name Plan/v.name Plan!v.name
end for
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B ANN Components in RoboChart

B.1 Metamodel and well-formedness conditions

Figure 26: Our modified RoboChart connection metamodel including our new
classes: ANNController, ANNOperation, GeneralController, and GeneralOperation.
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Figure 27: RoboChart module communication metamodel.
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WF1 The events of inputContext and outputContext are both non-empty, and layer-
structure, weights, inRanges, outRanges, annRange, and biases are non-empty
and of the same size, if not null.

WF2 If filename is null, then weights, biases, inRanges, outRanges, annRange, and
layerstructure are not.

WF3 Either layerstructure, weights, inRanges, outRanges, annRange, and biases are
all null, in which case filename is not, or they are all different from null.

WF4 activationfunction is NOTSPECIFIED if, and only if, filename is not null.

WF5 For every i, the size of weights i and biases i is layerstructure i.

WF6 For every i, and for all j, the size of weights i j is layerstructure (i − 1) when i is
greater than 1, or the size of the events in its inputContext otherwise.

WF7 The connections to and from an ANNController match the nature of the
events (inputs and outputs) in their directions and types.

WF8 An ANNController cannot define events, clocks, or variables.

WF9 An ANNController cannot define, provide, or require interfaces.

WF10 An ANNController’s inputContext and outputContext’s cannot provide or re-
quire interfaces.

WF11 An ANNController’s inputContext and outputContext cannot define clocks or
variables.

WF12 The connections to an ANNController must be to events in its input context,
and connections from an ANNController must be from events in its output con-
text.

Table 2: RoboChart ANN well-formedness conditions
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WF13 The sequence inRanges is of length equal to the number of events in the input-
Context.

WF14 The sequence outRanges is of length equal to the number of events in the
outputContext.

WF15 All elements in inRanges must be pairs where the second element is strictly
greater than the first.

WF16 All elements in outRanges must be pairs where the second element is strictly
greater than the first.

WF17 The second element in annRange must be strictly greater than the first.

WF18 Each event defined in the inputContext and outputContext must be an Ordere-
dEvent.

WF19 Each index of events defined in the inputContext and outputContext must be
sequential and one-indexed.

Table 3: RoboChart ANN Normalisation well-formedness conditions
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B.2 Semantics

[Context]
ActivationFunction ::= RELU | LINEAR | NOTSPECIFIED
Value == A
SeqExp ::= null seq | list⟨⟨seqN⟩⟩ |matrix⟨⟨seq seqValue⟩⟩ | tensor⟨⟨seq seq seqValue⟩⟩

ANNParameters
layerstructure : SeqExp
weights : SeqExp
biases : SeqExp
activationfunction : ActivationFunction
inputContext : Context
outputContext : Context
inRanges : SeqExp
outRanges : SeqExp
annRange : (Value× Value)

ANN
annparameters : ANNParameters

ANNController
ANN

Figure 28: RoboChart types for ANN translations, specified in Z.
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Rule 3. Function ANNChannelDecl
ANNChannelDecl(C : ANNController) : Program =

channel layerRes : N× N× Value

channelnodeOut : N× N× N× Value

for i in (1,# InRanges)

channel inEvents(i) in : Value

endfor

for i in (1,#OutRanges)

channeloutEvents(i) out : Value

endfor

channel terminate
where

inEvents = order(allEvents(C.annparameters.inputContext))

outEvents = order(allEvents(C.annparameters.outputContext))
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Rule 4. Function ANNConstants
ANNConstants(C : ANNController) : Par =

weights : seq seq seqValue;

biases : seq seqValue;

inRanges : seq(Value× Value);

outRanges : seq(Value× Value);

annRange : Value× Value;

norm : (Value× (Value× Value)× (Value× Value))→ Value;

normI : (N× Value)→ Value;

denormO : (N× Value)→ Value;

relu : Value→ Value

layerInput : seqN

weights = ((tensor∼)C.annparameters.weights) ∧

biases = ((matrix∼)C.annparameters.biases) l n ∧

inRanges = ((list∼)C.annparameters.inRanges) ∧

outRanges = ((list∼)C.annparameters.outRanges) ∧

annRange = C.annparameters.annRange ∧

layerInput = LStructure(0)⌢

((list∼)C.annparameters.layerstructure) ∧

∀n : N •

∀ r, r′ : Value× Value | r.2 > r.1 ∧ r′.2 > r′.1 •

∀x : Value •

norm(x, r, r′) = (((x− r.1))/(r.2− r.1)) ∗ (r′.2− r′.1) + r′.1 ∧

normI(n,x) = norm(x, inRanges(n),annRange) ∧

denormO(n,x) = norm(x,annRange,outRanges(n)) ∧

(x < 0 ⇒ (x, 0) ∈ relu) ∧

(x ≥ 0 ⇒ (x,x) ∈ relu)
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Rule 5. Function HiddenLayers
HiddenLayers(C : ANNController) : CSPAction =

HL(l) =

if(l == 1)

then

(HiddenLayer(l,LStructure(C, l),LStructure(C, l− 1)))

else

(HL(l− 1)

J | {| layerRes.(l− 1) |} | K
HiddenLayer(l,LStructure(C, l),LStructure(C, l− 1))

within

HL(layerNo(C)− 1)

Rule 6. Function OutputLayer
OutputLayer(C : ANNController) : CSPAction =

J{| layerRes.(layerNo(C)− 1) |} K i : 1 . . LStructure(C, layerNo(C)) •
Node(layerNo(C), i,LStructure(C, layerNo(C)− 1)))

Rule 7. Function CircANN
CircANN(C : ANNController) : CSPAction =

((Interpreter J | {| layerRes.0, layerRes.layerNo(C) |} | K ANN) \ {| layerRes |})a
terminate−→ Skip
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Rule 8. Function Interpreter
Interpreter(C : ANNController) : CSPAction) =

(9 i : 1 . . # inRanges • inEvents(i) in?x−→ layerRes.0.i!(normI(i,x))−→ Skip);

(9 i : 1 . . #outRanges • layerRes.layerNo(C).i?y−→ outEvents(i) out!(denormO(i,y))−→ Skip);

Interpreter
where

inEvents = order(allEvents(C.annparameters.inputContext))

outEvents = order(allEvents(C.annparameters.outputContext))

Rule 9. Function LStructure
LStructure(C : ANNController, i : N) : N =

if(i == 0)

then

#allEvents(C.annparameters.inputContext)

else

((list∼)C.annparameters.layerstructure) i

Rule 10. Function layerNo (number of layers)
layerNo(C : ANNController) : N =

#((list∼)C.annparameters.layerstructure)
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C Conformance Theory

C.1 Relations

This section recalls some basic constructs from the alphabetised relational calculus
used in the Unifying Theories of Programming (UTP) framework. In UTP, predicates
are interpreted as relations over variables drawn from a program’s alphabet, which
includes both before and after values of variables. These are distinguished syntac-
tically: an unprimed variable (e.g., v) denotes its value before execution, while a
primed variable (v′) denotes its value after execution.

Definition C.1 (Relation theory:- identity). The identity relation over an alphabet A
is defined as:

IIA = (v′ = v) where A = {v, v′}

where A is the set of variables {v, v′}. This relation states that the post-state is equal
to the pre-state for every variable in the alphabet, and thus represents no change.
It is used in UTP as the neutral element for sequential composition.

Definition C.2 (Relation theory:- sequence). Sequential composition of two rela-
tions P ; Q is defined by existentially quantifying over the intermediate state:

P ; Q = ∃x0 • P[x0/x′] ∧ Q[x0/x]

This definition formalises composition via state-passing: the post-state of P be-
comes the pre-state of Q. The notation P[x0/x′]means that we substitute x0 for x′ in
P, and similarly for Q. The fresh variable x0 represents the intermediate state vector
and x and x′ represent pre- and post-state vectors.

Definition C.3 (Relation theory:- initialised block). Local variable initialisation is
modelled by:

x not free in e⇒ ((var x := e • P) = (∃x,x′ • P[e/x]))

This introduces a fresh variable x′ initialised to e′, where x is not free in e. The
substitution P[e/x] replaces all instances of x in P with e, and the quantification
removes x and x′ from the alphabet. This operation is used to model simulation
blocks later in the paper.

Law C.4 (Relation theory:- leading assignment). Assignments are modelled rela-
tionally by substitution into the post-state:

x := e ; P = P[e/x]

This law states that executing x := e followed by a process P is equivalent to sub-
stituting e for x in P, reflecting the semantics of instantaneous assignment in the
relational model.

Definition C.5 (Relation theory:- alphabet extension). Alphabet extension adds a
variable x to the alphabet without affecting behaviour:

P+x = P ∧ (x′ = x)

This ensures that x remains unchanged during the execution of P, a useful construct
for reasoning about processes in larger alphabets or under variable scoping.
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These relational definitions form the foundation for the design and reactive theories
presented in the subsequent sections. In particular, they enable a clean algebraic
treatment of trace transformations, substitutions, and process approximations cen-
tral to our theory of neural network conformance. These definitions underpin the
process approximation semantics introduced in Section 5, and are essential for in-
terpreting process simulations in terms of CSP traces and updates.

C.2 Designs

The UTP theory of designs provides a unified framework for modelling pre- and
post-condition specifications. It forms the semantic foundation for describing to-
tal correctness properties of programs and extends naturally to reactive systems
through healthiness conditions such as R1, R2, and R3. In this section, we present
the basic theory of designs and their properties, which we later use to express and
reason about neural network behaviours as reactive CSP processes.

Definition C.6 ( Design theory:- design). A design is a UTP relation of the form:

(P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

This predicate specifies that if the program starts in a state where it is enabled (de-
noted by the boolean variable ok), and if the precondition P holds, then the program
must terminate in a state where it is again enabled (denoted by the boolean variable
ok′) and satisfies postcondition Q.

This formulation captures total correctness: if the design is invoked in a state sat-
isfying P, then it will not fail, and will establish Q.

Several lemmas show how substitution for ok and ok′ affects a design. We use the
UTP community convention that Pt = P[true/ok′] and Pf = P[false/ok′].

Definition C.7 (Design theory:- termination substitution).

Pb = P[b/ok′], Pt = P[true/ok′], Pf = P[false/ok′]

Lemma 21 (Design theory:- P[true/ok]t simplification). The relation P[true/ok]t de-
scribes the behaviour of a design P that is properly started (ok = true) and properly
terminates (ok′ = true). These substitutions simplify a design to its implication form:
if the precondition P holds before execution, then the postcondition Qwill hold after
execution.

(P ⊢ Q)[true/ok]t = P⇒ Q

Proof.

(P ⊢ Q)[true/ok]t

=

{
Definition 21: Design theory:- design: (P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
(ok ∧ P⇒ ok′ ∧ Q)[true/ok]t

=

{
Logic theory:- substitution

}
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true ∧ P⇒ true ∧ Q

=

{
Logic theory:- propositions

}
P⇒ Q

Lemma 22 (Design theory:- P[true/ok]f simplification). Substituting true for ok and
false for ok′ yields the negation of the precondition. That is, if the design is properly
started (ok = true) buut fails to terminate (ok′ = false), then the precondition must
have been violated (¬ P).

(P ⊢ Q)[true/ok]f = ¬ P

Proof.

(P ⊢ Q)[true/ok]f

=

{
Definition 21: Design theory:- design: (P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
(ok ∧ P⇒ ok′ ∧ Q)[true/ok]f

=

{
Logic theory:- substitution

}
true ∧ P⇒ false ∧ Q

=

{
Logic theory:- propositions

}
¬ P

Finally, we have two lemmas that show what happens Substituting false for ok
yields true in both true and false branches, capturing vacuous correctness when
a process is not enabled. The value of ok reflects whether the design is being
observed in a context where it is allowed to start. So:

• If (ok = true): the design is executed, and both the precondition and postcon-
dition matter.

• If (ok = false): the design is not properly started; thus, its behaviour is un-
constrained: the precondition does not have to hold, and the postcondition is
irrelevant.

This reflects abort, a divergent or undefined context in the observational seman-
tics.

Lemma 23 (Design theory:- P[false/ok]t simplification).

(P ⊢ Q)[false/ok]t = true
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Proof.

(P ⊢ Q)[false/ok]t

=

{
Definition 21: Design theory:- design: (P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
(ok ∧ P⇒ ok′ ∧ Q)[false/ok]t

=

{
Logic theory:- substitution

}
false ∧ P⇒ true ∧ Q

=

{
Logic theory:- propositions

}
true

Lemma 24 (Design theory:- P[false/ok]f simplification).

(P ⊢ Q)[false/ok]f = true

Proof.

(P ⊢ Q)[false/ok]f

=

{
Definition 21: Design theory:- design: (P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
(ok ∧ P⇒ ok′ ∧ Q)[false/ok]f

=

{
Logic theory:- substitution

}
false ∧ P⇒ false ∧ Q

=

{
Logic theory:- propositions

}
true

These simplification laws are used frequently in the refinement proofs throughout
the rest of the paper, especially for computing conformance under approximation
and simulation.

Designs admit case analysis and standard substitution principles. UTP uses the
notation [P] to den ote the universal closure of predicate P over its alphabet. If the
alphabet contains the state vector v, then [P] = ∀ v • P. A design’s alphabet contains
the observational variables ok and ok′, and possibly some programming variables.
If P is a design, then [P] is universally quantifying, in particular, ok′. This variable is,

148



D1.1 - RoboSAPIENS: RoboArch, RoboChart, and UQ (Public Document)

of course, a boolean, so there are two cases: termination and nontermination. This
is reflected in the following law.

Law C.8 (Design theory:- cases).

[P] = [Pf] ∧ [Pt]

Law C.9 (Design theory:- abort).

(P ⊢ Q)f = ok⇒ Pf

Law C.10 (Design theory:- not abort).

(P ⊢ Q)t = (ok ∧ Pt ⊢ Qt)

Law C.11 (Design theory:- existential design). Existential quantification over a de-
sign distributes in the same way as in the underlying implication.

(∃x • (P ⊢ Q)) = (∀x • P ⊢ ∃ x • Q)

These laws facilitate reasoning about designs algebraically and are foundational in
the reactive extensions in Section 4.

The UTP design theory includes algebraic laws for refinement and nondeterministic
choice. Hoare and He define a correctness relation between relations specifying
computations. They define Q to be correct with respect to P if, and only if, Q⇒ P.
So, all the behaviours of Q must also be behaviours of P. This notion applies both
to single-predicate relations and to designs. Their Theorem 3.1.2 expresses this
statement of correctness as an equivalent constraint on P and Q preconditions
and postconditions.

Theorem 6 (Design theory:- design refinement).

((P1 ⊢ P2) ⊑ (Q1 ⊢ Q2)) = [P1 ⇒ Q1] ∧ [P1 ∧ Q2 ⇒ P2]

Proof. See Hoare & He, Theorem 3.1.2.

As they point out, the message of this theorem is that (Q1 ⊢ Q2) is stronger because
it has a weaker assumptionQ1, and so it can be usedmorewidely; furthermore, in all
circumstances where (P1 ⊢ P2) can be used, (Q1 ⊢ Q2) has a stronger commitment,
so its behaviour can be more readily predicted and controlled.

Nondeterministic choice between relations is simply disjunction. But the added
richness of designs means that we can understand nondeterministic behaviour in
terms of assumptions and commitments.

Theorem 7 (Design theory:- design choice).

(P1 ⊢ P2) ⊓ (Q1 ⊢ Q2) = (P1 ∧ Q1 ⊢ P2 ∨ Q2)
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Proof. See Hoare & He, Theorem 3.1.4.

We cannot control the choice in the nondeterministic design (P1 ⊢ P2) ⊓ (Q1 ⊢ Q2).
It may abort if (P1 ⊢ P2) is chosen and P1 does not hold; but may also abort if
(Q1 ⊢ Q2) is chosen and Q1 does not hold. The effect of the nondeterministic
choice is certainly defined either by P2 or by Q2.

To support reactive processes, we extend the design theory with healthiness con-
ditions, starting with R1, which enforces monotonicity of the trace.

Definition C.12 (Design theory:- R1).

R1(P) = P ∧ (tr ≤ tr′)

This ensures that events are never removed from the trace as the process evolves.

While designs are sufficient to model sequential behaviour, reactive systems such
as neural controllers require explicit treatment of time and interaction. The R1 law
enforces trace monotonicity, forming the foundation of CSP-style reactivity.We
define an R1-design as:

Definition C.13 (Design theory:- R1-design).

(P |= Q) = R1(P ⊢ Q)

We use R1-designs as the foundation for reactive processes and show in Section
4 how they are further extended with R2 and R3 to model CSP semantics faith-
fully.

The next six results are used to simplify designs and R1-designs.

Lemma 25 (Design theory:- design ok pre).

(P ⊢ Q) = (ok ∧ P ⊢ Q)

Proof.

P ⊢ Q

=

{
Definition C.6: Design theory:- design: (P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
ok ∧ P⇒ ok′ ∧ Q

=

{
Logic theory:- propositions

}
ok ∧ ok ∧ P⇒ ok′ ∧ Q

=

{
Definition C.6: Design theory:- design: (P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
ok ∧ P ⊢ Q
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Corollary C.14 (Design theory:- R1-design ok pre).

(P |= Q) = (ok ∧ P |= Q)

Proof. From Lemma 25: Design theory:- design ok pre:

(P ⊢ Q) = (ok ∧ P ⊢ Q)

Lemma 26 (Design theory:- design precondition simp).

(P ⊢ P ∧ Q) = (P ⊢ Q)

Proof.

P ⊢ Q

=

{
Definition C.6: Design theory:- design: (P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
ok ∧ P⇒ ok′ ∧ Q

=

{
Logic theory:- propositions

}
ok ∧ P⇒ ok′ ∧ P ∧ Q

=

{
Definition: C.6: Design theory:- design(P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
P ⊢ P ∧ Q

Corollary C.15 (Design theory:- R1-design precondition simp).

(P |= P ∧ Q) = (P |= Q)

Proof. From Lemma 26: Design theory:- design precondition simp:

(P ⊢ P ∧ Q) = (P ⊢ Q)

Lemma 27 (Design theory:- design ok post).

(P ⊢ Q) = (P ⊢ ok ∧ Q)
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Proof.

P ⊢ Q

=

{
Definition C.6: Design theory:- design: (P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
ok ∧ P⇒ ok′ ∧ Q

=

{
Logic theory:- propositions

}
ok ∧ P⇒ ok′ ∧ ok ∧ Q

=

{
Definition C.6: Design theory:- design: (P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
P ⊢ ok ∧ Q

Corollary C.16 (Design theory:- R1-design ok post).

(P |= Q) = (P |= ok ∧ Q)

Proof. From Lemma 27: Design theory:- design ok post:

(P ⊢ Q) = (P ⊢ ok ∧ Q)

The following lemma and its corollary show how substitution distributes through a
design and an R1 design.

Lemma 28 ( Design theory:- design-substitution).

x isn’t {ok,ok′} ⇒ (P ⊢ Q)[e/x] = (P[e/x] ⊢ Q[e/x])

Proof.

(P ⊢ Q)[e/x]

=

{
Definition C.6: Design theory:- design: (P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
(ok ∧ P⇒ ok′ ∧ Q)[e/x]

=

{
Logic theory:- substitution : x isn’t {ok,ok′}

}
ok ∧ P[e/x] ⇒ ok′ ∧ Q[e/x]

=

{
Definition C.6: Design theory:- design: (P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q

}
P[e/x] ⊢ Q[e/x]
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Corollary C.17 ( Design theory:- R1-design-substitution).

x isn’t {ok,ok′, tr, tr′} ⇒ (P |= Q)[e/x] = (P[e/x] |= Q[e/x])

Proof.

(P |= Q)[e/x]

=

{
Definition C.13: Design theory:- R1-design: (P |= Q) = R1(P ⊢ Q)

}
(R1(P ⊢ Q))[e/x]

=

{
Logic theory:- substitution : x isn’t {tr, tr′}

}
R1((P ⊢ Q)[e/x])

=

 Lemma 28: Design theory:- design-substitution:

x isn’t {ok,ok′} ⇒ (P ⊢ Q)[e/x] = (P[e/x] ⊢ Q[e/x])


R1(P[e/x] ⊢ Q[e/x])

=

{
Definition C.13: Design theory:- R1-design: (P |= Q) = R1(P ⊢ Q)

}
P[e/x] |= Q[e/x]

The R1 healthiness function distributes through disjunction, since it is conjunc-
tive.

Lemma 29 (Design theory:- R1 disjunctive).

R1(P ∨ Q) = R1(P) ∨ R1(Q)

Proof.

R1(P ∨ Q)

=

{
Definition C.12: Design theory:- R1: R1(P) = P ∧ (tr ≤ tr′)

}
(P ∨ Q) ∧ (tr ≤ tr′)

=

{
Logic theory:- propositions

}
(P ∧ (tr ≤ tr′)) ∨ (Q ∧ (tr ≤ tr′))

=

{
Definition C.12: Design theory:- R1: R1(P) = P ∧ (tr ≤ tr′)

}
R1(P) ∨ R1(Q)
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C.3 CSP

In order to model the behaviour of reactive neural systems, we extend the UTP the-
ory of designs to incorporate the reactive semantics of Communicating Sequen-
tial Processes (CSP). Reactive systems are those that maintain ongoing interaction
with their environment, and thus require a more expressive model than traditional
sequential programs. The core idea is to represent system execution not only in
terms of initial and final states but also in terms of observable behaviours: most
notably, event traces and intermediate states.

We add two new observations to the alphabet of R1-designs: the booleanwait′ that
describes a situationwhen a program is waiting for interactionwith its environment.
This is the essence of reactivity, so we call such programs reactive processes. This
variable lets us distinguish intermediate observations from final ones. Ifwait′ is true,
then all the other dashed variables are also intermediate.

To reason about such intermediate states, we introduce a substitution notation:

Definition C.18 (Design theory:- waiting).

Pb = P[b/wait′]

The next lemma shows that the treatment of intermediate states respects the sub-
stitutional structure of the R1-design, and helps reduce reactive designs to their
non-waiting form for analysis.

Lemma 30 (Design theory:- R1 design not waiting).

(P |= Q)f = (Pf |= Qf)

Proof. From Lemma C.17: Design theory:- R1-design-substitution:

x isn’t {ok,ok′, tr, tr′} ⇒ (P |= Q)[e/x] = (P[e/x] |= Q[e/x])

We lift the relational identity to reactive processes. The relation IIrea describes
an identity that does not modify the trace and preserves the waiting condition. It
allows both initial and final observations: either the process aborts (¬ ok) and the
trace is unchanged, or it terminates successfully (ok′) with no change to trace or
waiting.

Definition C.19 (CSP theory:- identity).

IIrea = ¬ ok ∧ (tr ≤ tr) ∨ ok′ ∧ II

The R3 healthiness condition ensures that a process either behaves as the identity
when wait is true (during interaction), or behaves as P when wait is false (when no
interaction is expected).

Definition C.20 (CSP theory:- R3 healthiness).

R3(P) = IIrea 2 wait 3 P
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The conditional expression of R3 captures the reactive essence of CSP: a process
is either quiescent and awaiting input (wait is true), or active and progressing (wait
is false).

In the UTP, the R2 healthiness condition is one of the foundational constraints on
reactive processes. Reactive processes are models of systems that interact with
their environment over time, maintaining an ongoing dialogue rather than produc-
ing a single output and terminating. The R2 condition captures the idea of history
independence: the behaviour of a reactive process should not depend on the trace
of past events, but only on the extension to that trace made by the current inter-
action. This reflects a modular, stepwise view of computation in reactive systems.
The R2 healthiness condition can be defined as follows:

Definition C.21 (CSP theory:- R2).

R2(P(tr, tr′)) =⊓ s • P(s, s⌢ (tr′ − tr)

This formulation ensures that P is invariant under changes to the trace prefix, pro-
vided the suffix remains constant. That is, if P behaves a certain way when extend-
ing trace trwith e, it must behave identically when extending any other trace swith
the same suffix e. R2 can also be presented as a Galois connection between trace
extensions and prefix invariance.

We simplify the following presentation by assuming that the predicates we con-
sider as reactive processes are all R2-healthy. This assumption lets us omit the
explicit application of R2, simplifying derivations.

We now formalise the closure properties that reactive processes must satisfy. This
theorem states that a reactive process can be constructed from its behaviour in
the non-waiting case by combining the false and true termination branches. It
parallels Hoare and He’s Theorem 8.2.2 and is a foundational result for defining
CSP processes within UTP. It states that every CSP process can be expressed as an
R3-healthy R1-design. The substitutions extract the divergent behaviour (Pff) and
the postcondition (Pff).

Theorem 8 (CSP theory:- CSP reactive design closure ).

P = R(¬ Pff ⊢ Ptf)

Our assumption about R2 healthiness leads to the following corollary.

Corollary C.22 (CSP theory:- R3-R1-design process).

P is R2-healthy ⇒ P = R3(¬ Pff |= Ptf)

Proof.

P

=

{
Theorem 8:- CSP theory:- CSP reactive design closure : P = R(¬ Pff ⊢ Ptf)

}
R(¬ Pff ⊢ Ptf)

155



D1.1 - RoboSAPIENS: RoboArch, RoboChart, and UQ (Public Document)

=

{
R = R3 ◦ R2 ◦ R1

}
R3 ◦ R2 ◦ R1(¬ Pff ⊢ Ptf)

=

{
assumption: P is R2-healthy

}
R3 ◦ R1(¬ Pff ⊢ Ptf)

=

{
Definition C.13: Design theory:- R1-design: (P |= Q) = R1(P ⊢ Q)

}
R3(¬ Pff |= Ptf)

There now follow 10 lemmas about substitution in reactive designs.

Lemma 31 (CSP theory:- R3 not waiting).

(R3(P))f = Pf

Proof.

(R3(P))f

=

{
Definition C.20: CSP theory:- R3 healthiness: R3(P) = IIrea 2 wait 3 P

}
(IIrea 2 wait 3 P)f

=

{
Logic theory:- substitution

}
IIreaf 2 waitf 3 Pf

=

{
Logic theory:- substitution : Pb = P[b/wait′]

}
IIreaf 2 false 3 Pf

=

{
conditional

}
Pf

Lemma 32 (CSP theory:- R3 Simplification).

(R3(P))ca[b/ok] = ¬ b ∧ (tr ≤ tr) ∨ c ∧ (tr′ = tr) ∧ (wait′ = a) 2 a 3 Pca[b/ok]

Proof.

(R3(P))ca[b/ok]
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=

{
Definition C.20: CSP theory:- R3 healthiness: R3(P) = IIrea 2 wait 3 P

}
(IIrea 2 wait 3 P)ca[b/ok]

=

{
Logic theory:- substitution

}
IIrea

c
a[b/ok] 2 waita 3 Pca[b/ok]

=

 Definition C.19: CSP theory:- identity:

IIrea = ¬ ok ∧ (tr ≤ tr) ∨ ok′ ∧ II


(¬ ok ∧ (tr ≤ tr) ∨ ok′ ∧ (tr′ = tr) ∧ (wait′ = wait) )ca[b/ok] 2 waita 3 Pca[b/ok]

=

{
Logic theory:- substitution

}
¬ b ∧ (tr ≤ tr) ∨ c ∧ (tr′ = tr) ∧ (wait′ = a) 2 a 3 Pca[b/ok]

Lemma 33 (CSP theory:- R3(P)t[true/ok]t simplification).

(R3(P))t[true/ok]t = (tr′ = tr) ∧ wait′

Proof.

(R3(P))t[true/ok]t

=

 Lemma 32:- CSP theory:- R3 Simplification:

(R3(P))ca[b/ok] = ¬ b ∧ (tr ≤ tr) ∨ c ∧ (tr′ = tr) ∧ (wait′ = a) 2 a 3 Pca[b/ok]


¬ true ∧ (tr ≤ tr) ∨ true ∧ (tr′ = tr) ∧ (wait′ = true) 2 true 3 Pt[true/ok]t

=

{
Logic theory:- propositions

}
(tr′ = tr) ∧ wait′

Lemma 34 (CSP theory:- R3(P)t[true/ok]f simplification).

(R3(P))t[true/ok]f = false

Proof.

(R3(P))t[true/ok]f

=

 Lemma 32:- CSP theory:- R3 Simplification:

(R3(P))ca[b/ok] = ¬ b ∧ (tr ≤ tr) ∨ c ∧ (tr′ = tr) ∧ (wait′ = a) 2 a 3 Pca[b/ok]


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¬ true ∧ (tr ≤ tr) ∨ false ∧ (tr′ = tr) ∧ (wait′ = true) 2 true 3 Pt[true/ok]f

=

{
Logic theory:- propositions

}
false

Lemma 35 (CSP theory:- R3(P)t[false/ok]t simplification).

(R3(P))t[false/ok]t = (tr ≤ tr)

Proof.

(R3(P))t[false/ok]t

=

 Lemma 32:- CSP theory:- R3 Simplification:

(R3(P))ca[b/ok] = ¬ b ∧ (tr ≤ tr) ∨ c ∧ (tr′ = tr) ∧ (wait′ = a) 2 a 3 Pca[b/ok]


¬ false ∧ (tr ≤ tr) ∨ true ∧ (tr′ = tr) ∧ (wait′ = true) 2 true 3 Pt[false/ok]t

=

{
Logic theory:- propositions

}
(tr ≤ tr) ∨ (tr′ = tr) ∧ (wait′ = true)

=

{
Logic theory:- propositions

}
(tr ≤ tr)

Lemma 36 (CSP theory:- R3(P)t[false/ok]f simplification).

(R3(P))t[false/ok]f = (tr ≤ tr)

Proof.

(R3(P))t[false/ok]f

=

 Lemma 32:- CSP theory:- R3 Simplification:

(R3(P))ca[b/ok] = ¬ b ∧ (tr ≤ tr) ∨ c ∧ (tr′ = tr) ∧ (wait′ = a) 2 a 3 Pca[b/ok]


¬ false ∧ (tr ≤ tr) ∨ false ∧ (tr′ = tr) ∧ (wait′ = true) 2 true 3 Pt[false/ok]f

=

{
Logic theory:- propositions

}
(tr ≤ tr)
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Lemma 37 (CSP theory:- R3(P)f[true/ok]t simplification).

(R3(P))f[true/ok]t = Pf[true/ok]t

Proof.

(R3(P))f[true/ok]t

=

 Lemma 32:- CSP theory:- R3 Simplification:

(R3(P))ca[b/ok] = ¬ b ∧ (tr ≤ tr) ∨ c ∧ (tr′ = tr) ∧ (wait′ = a) 2 a 3 Pca[b/ok]


¬ true ∧ (tr ≤ tr) ∨ true ∧ (tr′ = tr) ∧ (wait′ = false) 2 false 3 Pf[true/ok]t

=

{
Logic theory:- propositions

}
Pf[true/ok]t

Lemma 38 (CSP theory:- R3(P)f[true/ok]f simplification).

(R3(P))f[true/ok]f = Pf[true/ok]f

Proof.

(R3(P))f[true/ok]f

=

 Lemma 32:- CSP theory:- R3 Simplification:

(R3(P))ca[b/ok] = ¬ b ∧ (tr ≤ tr) ∨ c ∧ (tr′ = tr) ∧ (wait′ = a) 2 a 3 Pca[b/ok]


¬ true ∧ (tr ≤ tr) ∨ false ∧ (tr′ = tr) ∧ (wait′ = false) 2 false 3 Pf[true/ok]f

=

{
Logic theory:- propositions

}
Pf[true/ok]f

Lemma 39 (CSP theory:- R3(P)f[false/ok]t simplification).

(R3(P))f[false/ok]t = Pf[false/ok]t

Proof.

(R3(P))f[false/ok]t

159



D1.1 - RoboSAPIENS: RoboArch, RoboChart, and UQ (Public Document)

=

 Lemma 32:- CSP theory:- R3 Simplification:

(R3(P))ca[b/ok] = ¬ b ∧ (tr ≤ tr) ∨ c ∧ (tr′ = tr) ∧ (wait′ = a) 2 a 3 Pca[b/ok]


¬ false ∧ (tr ≤ tr) ∨ true ∧ (tr′ = tr) ∧ (wait′ = false) 2 false 3 Pf[false/ok]t

=

{
Logic theory:- propositions

}
Pf[false/ok]t

Lemma 40 (CSP theory:- R3(P)f[false/ok]f simplification).

(R3(P))f[false/ok]f = Pf[false/ok]f

Proof.

(R3(P))f[false/ok]f

=

 Lemma 32:- CSP theory:- R3 Simplification:

(R3(P))ca[b/ok] = ¬ b ∧ (tr ≤ tr) ∨ c ∧ (tr′ = tr) ∧ (wait′ = a) 2 a 3 Pca[b/ok]


¬ false ∧ (tr ≤ tr) ∨ false ∧ (tr′ = tr) ∧ (wait′ = false) 2 false 3 Pf[false/ok]f

=

{
Logic theory:- propositions

}
Pf[false/ok]f

The next theorem establishes a key equivalence between refinement of reactive
designs and refinement of their underlying designs. Specifically, it states that two
reactive processes R3(P1 |= P2) and R3(Q1 |= Q2) satisfy the refinement relation
if, and only if, the corresponding designs P1 |= P2 and Q1 |= Q2 do. This result is
important because it allows us to reduce reasoning about reactive refinement to
simpler relational reasoning in the design theory. It hinges on the fact that both
reactive designs are R3-healthy, and by assumption also R2-healthy, so we can
decompose and simplify their semantics using substitutions for termination and
divergence cases. The case analysis in the proof breaks down the refinement con-
dition across all possible combinations of ok and ok′ (i.e., true and false), exploiting
earlier simplification lemmas. In doing so, the theorem shows that the observable
reactive behaviour of a process is fully determined by its design-level assumptions
and commitments. This provides a powerful tool for verifying refinement between
CSP-modeled neural networks within the UTP framework.

The proof proceeds by full case analysis over the observational conditions (wait′,
ok, and ok′). since these are all boolean, there are 23 = 8 cases: (wait′,ok,ok′) ∈
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{(t, t, t), (t, t, f), (t, f, t), (t, f, f), (f, t, t), (f, t, f), (f, f, t), (f, f, f)}. We use the substitution ex-
pression Pa[b/ok]c for case (a,b,c) of P.The simplification lemmas established ear-
lier ensure that all relevant cases reduce to standard forms, enabling the use of the
design refinement theorem.

Theorem 9 (CSP theory:- R2-CSP refinement).

(R3(P1 |= P2) ⊑ R3(Q1 |= Q2)) = ((P1 ⊢ P2) ⊑ (Q1 ⊢ Q2))

Proof.

R3(P) ⊑ R3(Q)

=

{
case analysis

}
(R3(P))t[true/ok]t ⊑ (R3(Q))t[true/ok]t

∧ (R3(P))t[true/ok]f ⊑ (R3(Q))t[true/ok]f

∧ (R3(P))t[false/ok]t ⊑ (R3(Q))t[false/ok]t

∧ (R3(P))t[false/ok]f ⊑ (R3(Q))t[false/ok]f

∧ (R3(P))f[true/ok]t ⊑ (R3(Q))f[true/ok]t

∧ (R3(P))f[true/ok]f ⊑ (R3(Q))f[true/ok]f

∧ (R3(P))f[false/ok]t ⊑ (R3(Q))f[false/ok]t

∧ (R3(P))f[false/ok]f ⊑ (R3(Q))f[false/ok]f
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=



Lemma 33: CSP theory:- R3(P)t[true/ok]t simplification:

(R3(P))t[true/ok]t = (tr′ = tr) ∧ wait′

Lemma 34: CSP theory:- R3(P)t[true/ok]f simplification:

(R3(P))t[true/ok]f = false

Lemma 35: CSP theory:- R3(P)t[false/ok]t simplification:

(R3(P))t[false/ok]t = (tr ≤ tr)

Lemma 36: CSP theory:- R3(P)t[false/ok]f simplification:

(R3(P))t[false/ok]f = (tr ≤ tr)

Lemma 37: CSP theory:- R3(P)f[true/ok]t simplification:

(R3(P))f[true/ok]t = Pf[true/ok]t

Lemma 38: CSP theory:- R3(P)f[true/ok]f simplification:

(R3(P))f[true/ok]f = Pf[true/ok]f

Lemma 39: CSP theory:- R3(P)f[false/ok]t simplification:

(R3(P))f[false/ok]t = Pf[false/ok]t

Lemma 40: CSP theory:- R3(P)f[false/ok]f simplification:

(R3(P))f[false/ok]f = Pf[false/ok]f


(tr′ = tr) ∧ wait′ ⊑ (tr′ = tr) ∧ wait′

∧ false ⊑ false

∧ (tr ≤ tr) ⊑ (tr ≤ tr)

∧ (tr ≤ tr) ⊑ (tr ≤ tr)

∧ Pf[true/ok]t ⊑ Qf[true/ok]t

∧ Pf[true/ok]f ⊑ Qf[true/ok]f

∧ Pf[false/ok]t ⊑ Qf[false/ok]t

∧ Pf[false/ok]f ⊑ Qf[false/ok]f

=

{
reflexivity of refinement

}
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true

∧ true

∧ true

∧ true

∧ Pf[true/ok]t ⊑ Qf[true/ok]t

∧ Pf[true/ok]f ⊑ Qf[true/ok]f

∧ Pf[false/ok]t ⊑ Qf[false/ok]t

∧ Pf[false/ok]f ⊑ Qf[false/ok]f

=

{
propositional calculus

}
Pf[true/ok]t ⊑ Qf[true/ok]t

∧ Pf[true/ok]f ⊑ Qf[true/ok]f

∧ Pf[false/ok]t ⊑ Qf[false/ok]t

∧ Pf[false/ok]f ⊑ Qf[false/ok]f

Taking P1 ⊢ P2 for P and Q1 ⊢ Q2 for Q, we have

(P1 ⊢ P2)f[true/ok]t ⊑ (Q1 ⊢ Q2)f[true/ok]t

∧ (P1 ⊢ P2)f[true/ok]f ⊑ (Q1 ⊢ Q2)f[true/ok]f

∧ (P1 ⊢ P2)f[false/ok]t ⊑ (Q1 ⊢ Q2)f[false/ok]t

∧ (P1 ⊢ P2)f[false/ok]f ⊑ (Q1 ⊢ Q2)f[false/ok]f

=

 Lemma 23: Design theory:- P[false/ok]t simplification: (P ⊢ Q)[false/ok]t = true

Lemma 24: Design theory:- P[false/ok]f simplification: (P ⊢ Q)[false/ok]f = true


(P1 ⊢ P2)f[true/ok]t ⊑ (Q1 ⊢ Q2)f[true/ok]t

∧ (P1 ⊢ P2)f[true/ok]f ⊑ (Q1 ⊢ Q2)f[true/ok]f

∧ true ⊑ true

∧ true ⊑ true

=

{
reflexivity of refinement

}
(P1 ⊢ P2)f[true/ok]t ⊑ (Q1 ⊢ Q2)f[true/ok]t

∧ (P1 ⊢ P2)f[true/ok]f ⊑ (Q1 ⊢ Q2)f[true/ok]f
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=

{
Theorem 3.1.2: Hoare & He p.77

}
(P1f ⊢ P2f) ⊑ (Q1f ⊢ Q2f)

This theorem characterises refinement between reactive designs in terms of refine-
ment between their underlying pre- and postconditions. The key insight is that if
two reactive processes are both R2 and R3-healthy, then refinement at the level of
reactive behaviours can be reduced to refinement of their designs. This reduction
simplifies reasoning significantly: rather than reasoning directly about reactive ob-
servations such as traces or refusals, we can operate on the design components
directly. The proof makes this precise by considering the substitution instances
of the ok and ok’ variables and applying simplification lemmas derived from the
healthiness conditions. The result supports modular verification, as one can ver-
ify refinement of reactive processes by checking the corresponding design-level
refinements.

This corollary expresses themonotonicity of the R3 operator with respect to refine-
ment. Specifically, it states that if one design P refines anotherQ, then applying the
R3 healthiness condition to both preserves that refinement order. Since refinement
is preserved through the application of R3, this healthiness operator is monotonic
with respect to the refinement ordering. This property supports compositional rea-
soning.

Corollary C.23 (CSP theory:- R3-monotonicity).

(P ⊑ Q) ⇒ (R3(P) ⊑ R3(Q))

Proof. Directly from Theorem 9: CSP theory:- R2-CSP refinement:

(R3(P1 |= P2) ⊑ R3(Q1 |= Q2)) = ((P1 ⊢ P2) ⊑ (Q1 ⊢ Q2))

This property is important because it allows compositional reasoning in the UTP
framework. It ensures that once refinement is established at the design level, lifting
to reactive processes via R3 preserves that relationship. Consequently, designers
can verify and refine system components in terms of their logical assumptions and
commitments, confident that reactive interpretations will maintain these guaran-
tees.

Now we turn to CSP’s internal choice operator. First, R3 distributes over choice
(in the jargon, R3 is disjunctive). Internal (nondeterministic) choice is interpreted
in UTP and CSP via disjunction. The R3 healthiness condition respects this struc-
ture.

Lemma 41 (CSP theory:- R3 disjunctive).

R3(P ⊓Q) = R3(P) ⊓ R3(Q)
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Proof.

R3((P1 ⊢ P2) ⊓ (Q1 ⊢ Q2))

=

{
relational semantics of internal choice

}
R3((P1 ⊢ P2) ∨ (Q1 ⊢ Q2))

=

{
R3 disjunctivity

}
R3(P1 ⊢ P2) ∨ R3(Q1 ⊢ Q2)

=

{
relational semantics of internal choice

}
R3(P1 ⊢ P2) ⊓ R3(Q1 ⊢ Q2)

Next, we define internal choice as a reactive-design operator. As we said before,
the operator is simply disjunction. Here, we elaborate on that to explain the com-
position of preconditions and postconditions.

Lemma 42 (CSP theory internal choice reactive design ).

R3(P1 |= P2) ⊓ R3(Q1 |= Q2) = R3(P1 ∧ Q1 |= P2 ∨ Q2)

Proof.

R3(P1 |= P2) ⊓ R3(Q1 |= Q2)

=

 Lemma 41: CSP theory:- R3 disjunctive:

R3(P ⊓Q) = R3(P) ⊓ R3(Q)


R3((P1 |= P2) ⊓ (Q1 |= Q2))

=

 Definition C.13: Design theory:- R1-design:

(P |= Q) = R1(P ⊢ Q)


R3((P1 ⊢ R1(P2)) ⊓ (Q1 ⊢ R1(Q2)))

=

 Theorem 7: Design theory:- design choice:

(P1 ⊢ P2) ⊓ (Q1 ⊢ Q2) = (P1 ∧ Q1 ⊢ P2 ∨ Q2)


R3(P1 ∧ Q1 ⊢ R1(P2) ∨ R1(Q2))

=

 Lemma 29: Design theory:- R1 disjunctive:

R1(P ∨ Q) = R1(P) ∨ R1(Q)


R3(P1 ∧ Q1 ⊢ R1(P2 ∨ Q2))
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=

 Definition C.13: Design theory:- R1-design:

(P |= Q) = R1(P ⊢ Q)


R3(P1 ∧ Q1 |= P2 ∨ Q2)

The next result is important. It reduces refinement of reactive designs to a familiar
pair of proof obligations: weakening preconditions and strengthening postcondi-
tions.

Lemma 43 (CSP theory:- reactive design refinement).

P ⊑ Q = [¬ Pff ⇒ ¬ Qf
f] ∧ [¬ Pff ∧ R1(Qt

f) ⇒ R1(Ptf)]

Proof.

P ⊑ Q

=

 Theorem C.22: CSP theory:- R3-R1-design process:

P is R2-healthy ⇒ P = R3(¬ Pff |= Ptf)


R3(¬ Pff |= Ptf) ⊑ R3(¬ Qf

f |= Qt
f)

⇐=

 Theorem C.23: CSP theory:- R3-monotonicity:

(P ⊑ Q) ⇒ (R3(P) ⊑ R3(Q))


(¬ Pff |= Ptf) ⊑ (¬ Qf

f |= Qt
f)

=

 Definition C.13: Design theory:- R1-design:

(P |= Q) = R1(P ⊢ Q)


(¬ Pff ⊢ R1(Ptf)) ⊑ (¬ Qf

f | R1(Qt
f))

=

 Theorem 6: Design theory:- design refinement:

((P1 ⊢ P2) ⊑ (Q1 ⊢ Q2)) = [P1 ⇒ Q1] ∧ [P1 ∧ Q2 ⇒ P2]


[¬ Pff ⇒ ¬ Qf

f] ∧ [¬ Pff ∧ R1(Qt
f) ⇒ R1(Ptf)]

Lemma 44 (CSP theory:- reactive design precondition).

¬ (R3(P |= Q))ff = ok ∧ Pff

Proof.

¬ (R3(P |= Q))ff
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=

 Lemma 31: CSP theory:- R3 not waiting:

(R3(P))f = Pf


¬ (P |= Q)ff

=

 Lemma C.17: Design theory:- R1-design-substitution:

x isn’t {ok,ok′, tr, tr′} ⇒ (P |= Q)[e/x] = (P[e/x] |= Q[e/x])


¬ (Pf |= Qf)

f

=

 Definition C.13: Design theory:- R1-design:

(P |= Q) = R1(P ⊢ Q)


¬ (Pf ⊢ R1(Qf))

f

=

 Definition C.6: Design theory:- design:

(P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q


¬ (ok ∧ Pf ⇒ ok′ ∧ R1(Qf))

f

=

{
Logic theory:- substitution

}
¬ (ok ∧ Pff ⇒ false ∧ R1(Qf)

f)

=

{
Logic theory:- propositions:

}
¬ ¬ (ok ∧ Pff)

=

{
Logic theory:- propositions:

}
ok ∧ Pff

Lemma 45 ( CSP theory:- reactive design postcondition ).

(R3(P |= Q))tf = ok ∧ Ptf ⇒ R1(Qf)
t

Proof.

(R3(P |= Q))tf

=

 Lemma 31: CSP theory:- R3 not waiting:

(R3(P))f = Pf


(P |= Q)tf

=

 Lemma C.17: Design theory:- R1-design-substitution:

x isn’t {ok,ok′, tr, tr′} ⇒ (P |= Q)[e/x] = (P[e/x] |= Q[e/x])


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(Pf |= Qf)
t

=

 Definition C.13: Design theory:- R1-design:

(P |= Q) = R1(P ⊢ Q)


(Pf ⊢ R1(Qf))

t

=

 Definition C.6: Design theory:- design:

(P ⊢ Q) = ok ∧ P⇒ ok′ ∧ Q


(ok ∧ Pf ⇒ ok′ ∧ R1(Qf))

t

=

{
Logic theory:- substitution :

}
ok ∧ Ptf ⇒ true ∧ R1(Qf)

t

=

{
Logic theory:- propositions:

}
ok ∧ Ptf ⇒ R1(Qf)

t

Lemma 46 (CSP theory:- reactive design refinement 2). for R2-healthy P1, P2, Q1,
Q2

R3(P1 |= P2) ⊑ R3(Q1 |= Q2) = [P1 ⇒ Q1] ∧ [P1 ∧ R1(Q2) ⇒ P2]

Proof.

R3(P1 |= P2) ⊑ R3(Q1 |= Q2)

=

 Theorem 9: CSP theory:- R2-CSP refinement:

(R3(P1 |= P2) ⊑ R3(Q1 |= Q2)) = ((P1 ⊢ P2) ⊑ (Q1 ⊢ Q2))


[¬ (R3(P1 ⊢ R1(P2)))ff ⇒ ¬ (R3(Q1 ⊢ R1(Q2)))ff]

∧
[¬ (R3(P1 ⊢ R1(P2)))ff ∧ R1((R3(Q1 ⊢ R1(Q2)))tf) ⇒ R1((R3(P1 ⊢ R1(P2)))tf)]

=

 Lemma 44: CSP theory:- reactive design precondition:

¬ (R3(P |= Q))ff = ok ∧ Pff


[ok ∧ P1ff ⇒ ok ∧ Q1ff] ∧ [ok ∧ P1ff ∧ R1((R3(Q1 ⊢ R1(Q2)))tf) ⇒ R1((R3(P1 ⊢ R1(P2)))tf)]

=

 CSP theory:- reactive design postcondition :

(R3(P |= Q))tf = ok ∧ Ptf ⇒ R1(Qf)
t


[ok ∧ P1ff ⇒ ok ∧ Q1ff] ∧ [ok ∧ P1ff ∧ (ok ∧ Q1tf ⇒ R1(Q2f)

t) ⇒ (ok ∧ P1tf ⇒ R1(P2f)t)]
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=

 Law C.8: Design theory:- cases:

[P] = [Pf] ∧ [Pt]


[(ok ∧ P1ff ⇒ ok ∧ Q1ff)[false/ok]]

∧
[(ok ∧ P1ff ⇒ ok ∧ Q1ff)[true/ok]]

∧
[(ok ∧ P1ff ∧ (ok ∧ Q1tf ⇒ R1(Q2f)

t) ⇒ (ok ∧ P1tf ⇒ R1(P2f)t))[fslse/ok]]

∧
[(ok ∧ P1ff ∧ (ok ∧ Q1tf ⇒ R1(Q2f)

t) ⇒ (ok ∧ P1tf ⇒ R1(P2f)t))[true/ok]]

=

{
Logic theory:- substitution

}
[false ∧ P1ff ⇒ false ∧ Q1ff]

∧
[true ∧ P1ff ⇒ true ∧ Q1ff]

∧
[false ∧ P1ff ∧ (false ∧ Q1tf ⇒ R1(Q2f)

t) ⇒ false ∧ P1tf ⇒ R1(P2f)t]

∧
[true ∧ P1ff ∧ (true ∧ Q1tf ⇒ R1(Q2f)

t) ⇒ true ∧ P1tf ⇒ R1(P2f)t]

=

{
Logic theory:- propositions

}
[true] ∧ [P1ff ⇒ Q1ff] ∧ [true] ∧ [P1ff ∧ (Q1tf ⇒ R1(Q2f)

t) ⇒ P1tf ⇒ R1(P2f)t]

=

{
Logic theory:- predicates

}
[P1ff ⇒ Q1ff] ∧ [P1ff ∧ (Q1tf ⇒ R1(Q2f)

t) ⇒ P1tf ⇒ R1(P2f)t]

=

{
Logic theory:- propositions

}
[P1ff ⇒ Q1ff] ∧ [P1ff ∧ R1(Q2f)

t ⇒ P1tf ⇒ R1(P2f)t]

=

 assumption:

[P1f ⇒ P1t]


[P1ff ⇒ Q1ff] ∧ [P1ff ∧ R1(Q2f)

t ⇒ R1(P2f)t]

C.4 Approximations

In this section, we introduce a theory of approximate conformance for neural sys-
tems based on observational semantics. Unlike classical refinement, which requires
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exact correspondence of behaviour, approximate conformance tolerates bounded
differences—an essential property for reasoning about real-valued systems such
as neural networks, which exhibit numerical imprecision due to learning, noise, and
rounding. Our approach is compositional and layered. We begin with an approxi-
mate relation on values, lift it to sequences, and then extend it to reactive processes.
At each level, we show how approximation respects nondeterministic choice and
preserves key semantic properties.

Example C.24 (Approximation in ANNs). Suppose a neural network produces the
output trace [0.9, 0.1, 0.8], and we choose a tolerance ε = 0.2. Then the pointwise
approximation intervals are:

Step1 : ≈ (0.2)(0.9) = ⟨0.7, 1.1⟩

Step2 : ≈ (0.2)(0.1) = ⟨−0.1, 0.3⟩

Step3 : ≈ (0.2)(0.8) = ⟨0.6, 1.0⟩

Thus, the set of ε-approximating traces includes all sequences of the form ⟨x1,x2,x3⟩
where:

x1 ∈ ⟨0.7, 1.1⟩, x2 ∈ ⟨−0.1, 0.3⟩, x3 ∈ ⟨0.6, 1.0⟩

For example, the following traces conform within ε to the original trace:

⟨0.85, 0.2, 0.95⟩, ⟨0.7,−0.05, 0.6⟩, ⟨1.0, 0.0, 0.8⟩

These traces are all members of the set seq approx(ε)(⟨0.9, 0.1, 0.8⟩), and so would
be permitted as observations in the process Approx(ε)(P), where P is the original
network.

This illustrates how the simulation

Approx(ε)(P) = var t := tr • P+ t ; upd tr(ε)

captures bounded behavioural variation. The update upd tr(ε) allows any tr′ such
that the added suffix tr′ − t is an ε-approximation of the original suffix tr0 − t, where
tr0 satisfies P.

We start our formal account of conformance for ANNs by defining the simple idea
of one value approximating another within a tolerance. The fundamental idea in our
theory is that value approximation is defined using intervals. The binary relation
approx(ε) captures ε-bounded approximation between values.

Definition C.25 (Value Approximation). We approximate x within ε as

approx(ε)(x) =̂ [x− ε, x+ ε] provided ε ≥ 0

This function defines the atomic unit of deviation our system can tolerate. The
proviso avoids an empty interval, which does not interest us. The function has
some obvious properties. First, approximation defines a range of values:
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Law C.26 (Value approximation: interval).

x ∈ approx(ε)(y) = y− ε ≤ x ≤ y+ ε

Every value approximates itself:

Law C.27 (Value self-approximation).

ε ≥ 0 ⇒ x ∈ approx(ε)(x)

Next, every value is a 0-approximation of itself:

Law C.28 (Value trivial approximation).

approx(0)(x) = {x}

We prove just one of these laws: trivial value approximation.

approx(0)(x)

=

{
definition approx(ε)(x) = [x− ε, x+ ε]

}
[x− 0,x+ 0]

=

{
arithmetic

}
[x,x]

=

{
sets

}
{x}

A fifth property is so important that we prove it separately as a lemma: value ap-
proximation is monotonic in its tolerance.

Lemma 47 (Value Approximation Monotonicity).

δ ≤ ε ⇒ approx(δ)(x) ⊆ approx(ε)(x)

Proof.

approx(δ)(x)

=

{
definition approx(ε)(x) = [x− ε, x+ ε]

}
[x− δ,x+ δ]

⊆
{

assumption: δ ≤ ε, sets

}
[x− ε, x+ ε]

=

{
definition approx(ε)(x) = [x− ε, x+ ε]

}
approx(ε)(x)
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Next, we extend value approximation to sequence approximation. Our motivation
for this is to be able to describe how one process trace approximates another.

Definition C.29 (Sequence Pointwise Approximation). We lift value approximation
pointwise to sequences:

seq approx(ε)(xs) = {ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i))) }

Sequence approximation has some useful properties.

Law C.30 (Least element value approx).

ε ≥ 0 ⇒ seq approx(0)(xs) ⊆ seq approx(ε)(xs)

Law C.31 (Sequence approx monotonicity).

δ ≤ ε ⇒ seq approx(δ)(xs) ⊆ seq approx(ε)(xs)

Law C.32 (Symmetry).

ys ∈ seq approx(ε)(xs)xs ∈ seq approx(ε)(ys)

Weprove some of these facts. First, a generalisation of value self-approximation.

Lemma 48 (Sequences Self-Approximation).

ε ≥ 0 ⇒ xs ∈ seq approx(ε)(xs)

Proof.

xs ∈ seq approx(ε)(xs)

=

 definition seq approx(ε)(xs)

= {ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i))) }


xs ∈ {ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i))) }

=

{
sets

}
(#xs = #xs) ∧ (∀ i : domxs • xs(i) ∈ approx(ε)(xs(i)))

=

{
logic

}
∀ i : domxs • xs(i) ∈ approx(ε)(xs(i))

=

{
lemma: values self-approximate ε ≥ 0 ⇒ x ∈ approx(ε)(x)

}
∀ i : domxs • true

=

{
logic

}
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true

Next, we generalise the approximation of trivial value.

Lemma 49 (Trivial Sequence Approximation).

seq approx(0)(xs) = {xs}

Proof.

seq approx(0)(xs)

=

 definition seq approx(ε)(xs)

= {ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i))) }


{ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(0)(xs(i)))

=

{
lemma: trivial value approximation approx(0)(x) = {x}

}
{ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ {xs(i)})

=

{
sets: y ∈ {x} = (y = x)

}
{ys | (#ys = #xs) ∧ (∀ i : domys • (ys(i) = xs(i)))

=

{
sequences

}
{ys | (ys = xs)

=

{
sets

}
{xs}

Next, a generalisation of the symmetry of value approximation.

Lemma 50 (Symmetry of Sequence Approximation).

ys ∈ seq approx(ε)(xs) = xs ∈ seq approx(ε)(ys)

Proof.

ys ∈ seq approx(ε)(xs)

=

 lemma: ys ∈ seq approx(ε)(xs)

= (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i)))


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(#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i)))

=

{
logic

}
(#xs = #ys) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i)))

=

{
sequences

}
(#xs = #ys) ∧ (∀ i : domxs • ys(i) ∈ approx(ε)(xs(i)))

=

{
lemma: x ∈ approx(ε)(ys) = y ∈ approx(ε)(x)

}
(#xs = #ys) ∧ (∀ i : domxs • xs(i) ∈ approx(ε)(ys(i)))

=

 lemma: ys ∈ seq approx(ε)(xs)

= (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i)))


xs ∈ seq approx(ε)(ys)

Sequence approximation is monotonic in the tolerance.

Lemma 51 (Sequence Approximation Monotonicity). δ ≤ ε ⇒ seq approx(δ)(xs) ⊆
seq approx(ε)(xs)

seq approx(δ)(xs)

=

 definition seq approx(ε)(xs)

= {ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i))) }


{ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(δ)(xs(i))) }

⊆

 lemma: value approx mono: δ ≤ ε ⇒ approx(δ)(x) ⊆ approx(ε)(x)

sets


{ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i))) }

=

 definition seq approx(ε)(xs)

= {ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i))) }


seq approx(ε)(xs)

A consequence of monotonicity in tolerance is that there is a minimum element in
the set inclusion order.
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Lemma 52 (Least Element). ε ≥ 0 ⇒ seq approx(0)(xs) ⊆ seq approx(ε)(xs)

seq approx(0)(xs) ⊆ seq approx(ε)(xs)

=

{
lemma: trivial sequence approximation: seq approx(0)(xs) = {xs}

}
{xs} ⊆ seq approx(ε)(xs)

=

{
sets

}
xs ∈ seq approx(ε)(xs)

=

{
lemma: sequences self-approx: ε ≥ 0 ⇒ xs ∈ seq approx(ε)(xs)

}
true

We lifted value approximation to sequence approximation to account for approxi-
mate traces. Now, we lift sequence approximation to process approximation (sets
of traces), leading to a definition of conformance. To show that Q conforms within
ε to P, we generate all acceptable ε-approximate behaviours of P. We then require
Q to have one or more of these approximate behaviours. The function Approx(ε)
generates all the required behaviours.

Definition C.33 (Process Approximation). Approx(ε)(P)

Approx(ε)(P) =̂ var t := tr • P+t ; updp tr(ε)

upd tr(ε) =̂ tr :∈ { s : seq approx(ε)(tr− t) • t⌢ s }

We call this definition a simulation. We take the terminology from UTP’s separating
simulations [HJ98b, Chap. 7], where Hoare and He use them in the definition of their
parallel-by-merge operator. The definition starts with variable block var t := tr • · · ·
introducing a new variable t (which must not be free in P). This variable records
the value of tr before P is executed (t := tr). Next, we execute P with its list of
programming variables augmented by t, unaffected by the execution of P: (P+t).
Finally, the relation upd tr(ε) updates the trace. The auxiliary definition of upd tr(ε)

generates the set { s : seq approx(ε)(tr − t) • t ⌢ s }. Here, tr is the trace produced
by P, and t is the value of tr recorded before P’s execution. So tr − t is the con-
tribution to the trace made by the process P. The set comprehension generates
all possible occurrences where this portion is replaced by an ε-approximation. Fi-
nally, tr is assigned the value of one of these approximations (tr :∈ · · · ). In this way,
Approx(ε)(P) describes all the acceptable approximations of P. (This use of the
symbol :∈ for assignment from a set is Abrial-esque—blending syntactic economy
with semantic precision.)

There are laws for this simulation. First, there are two laws for the trace update
relation. The relation upd tr(0) is simply the identity relation II. Next, upd tr is
antimonotonic in its tolerance. This law leads to the antimonotonicity of the Approx
relation.
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Law C.34 (Identity).

upd tr(0) = II

Law C.35 (Antimonotonicity of upd tr).

δ ≤ ε ⇒ (upd tr(ε) ⊑ upd tr(δ))

Law C.36 (Antimonotonicity of Approx).

δ ≤ ε ⇒ (Approx(ε)(P) ⊑ Approx(δ)(P))

Law C.37 (Local block).

x not free in e⇒ ((var x := e • P) = R3(P[e/x]))

We take the law for a local block from the theory of reactive processes [HJ98b,
Chap. 8]. The assignment in the process var x := e • P uses a law similar to “leading
assignment” in the refinement calculus [Mor94]. We substitute e for the initial value
of x, and the result is var x • P[e/x]. Suppose we also know that x not free in e,
then we can remove the declaration of x. This transformation is valid only if any
preceding process has terminated. If it has not, the process var x := e • P must
behave as II. We cover this case by applying the healthiness condition R3. This
derivation explains the law. We can use it to expand the algebraic definition of our
simulation.

var t := tr • P+t ; upd tr(ε)

=

{
x not free in e⇒ ((var x := e • P) = R3(P[e/x]))

}
R3((P+t ; upd tr(ε))[tr/t])

=

{
alphabet extension, substitution

}
R3(P ∧ (t′ = tr) ; upd tr(ε))

=

{
definition

}
R3(P ∧ (t′ = tr) ; tr :∈ { s : seq approx(ε)(tr− t) • t⌢ s })

=

{
relations

}
R3(∃ tr0, t0 • P[tr0/tr′] ∧ (t0 = tr) ∧ tr′ ∈ { s : seq approx(ε)(tr0 − t0) • t0 ⌢ s })

=

{
sets

}
R3(∃ tr0, t0, s : seq approx(ε)(tr0 − t0) • P[tr0/tr′] ∧ (t0 = tr) ∧ (s = tr′ − t0))

=

{
logic

}
R3(∃ tr0 • P[tr0/tr′] ∧ tr′ − tr ∈ seq approx(ε)(tr0 − tr))
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The result is a non-algebraic definition for generating the approximations of P. We
have already explained the need to apply the healthiness condition. The predicate
within this records the final trace satisfying P, which is called tr0. This trace has two
parts: the initial trace tr and the part added by executing P, which is tr0 − tr. It is
these events that we approximate, not those events in tr.

We use the sequence difference operator in the simulation’s algebraic and non-
algebraic statements. The next lemma establishes that this is well-defined in the
update relation.

Lemma 53 (Well-definedness of upd tr(ε)).

t := tr ; P+t

=

{
relations

}
(P+t)[tr/t]

=

{
relations

}
(P ∧ (t′ = t))[tr/t]

=

{
assumption P is R1

}
(P ∧ tr ≤ tr′ ∧ (t′ = t))[tr/t]

=

{
substitution

}
P[tr/t] ∧ tr ≤ tr′ ∧ (t′ = tr)

⇒
{

logic

}
t′ ≤ tr′

Notice that the update relation is not a process. It is not R1.

Lemma 54 (Update Isn’t R1).

upd tr(eps)

=

{
definition: updtr(ε) = tr :∈ { s : seq approx(ε)(tr− t) • t⌢ s }

}
R3(tr′ ∈ { s : seq approx(ε)(tr− t) • t⌢ s })

=

{
definition R3(P) =̂ II 2 wait 3 P

}
II 2 wait 3 tr′ ∈ { s : seq approx(ε)(tr− t) • t⌢ s }

⇒
{

relations

}
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tr ≤ tr′ 2 wait 3 tr′ ∈ { s : seq approx(ε)(tr− t) • t⌢ s }

=

{
sets

}
tr ≤ tr′ 2 wait 3 ∃ s : seq approx(ε)(tr− t) • tr′ = t⌢ s

⇒
{

sequences

}
tr ≤ tr′ 2 wait 3 t ≤ tr′

Neither is it R2.

Lemma 55 (Update Isn’t R2).

R2(upd tr(ε))

=

{
definition upd tr(ε) =̂ tr :∈ { s : seq approx(ε)(tr− t) • t⌢ s }

}
R2(R3(tr′ ∈ { s : seq approx(ε)(tr− t) • t⌢ s }))

=

{
reactive R2(R3(P)) = R3(R2(P))

}
R3(R2(tr′ ∈ { s : seq approx(ε)(tr− t) • t⌢ s }))

=

{
definition R2(P) = P[⟨⟩, tr′ − tr/tr, tr′]

}
R3((tr′ ∈ { s : seq approx(ε)(tr− t) • t⌢ s })[⟨⟩, tr′ − tr/tr, tr′])

=

{
substitution

}
R3(tr′ − tr ∈ { s : seq approx(ε)(⟨⟩ − t) • t⌢ s })

̸=
{

definition upd tr(ε) =̂ tr :∈ { s : seq approx(ε)(tr− t) • t⌢ s }

}
upd tr(ε)

We prove that upd tr(0) is the relational identity.

Law C.38 (Identity update). upd tr(0) = II

upd tr(0)

=

{
definition updtr(ε) = tr :∈ { s : seq approx(ε)(tr− t) • t⌢ s }

}
tr :∈ { s : seq approx(0)(tr− t) • t⌢ s }

=

{
lemma: seq approx(0)(s) = {s}

}
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R3(tr :∈ { s : {tr− t} • t⌢ s })

=

{
sets

}
R3(tr :∈ {t⌢ (tr− t)})

=

{
sequences

}
R3(tr :∈ {tr})

=

{
relations

}
R3(tr := tr)

=

{
relations

}
R3(II)

=

{
reactive

}
II

Update is antimonotonic in its tolerance.

Lemma 56 (Antimonotonicity of upd tr).

δ ≤ ε ⇒ (upd tr(ε) ⊑ upd tr(δ))

Proof.

upd tr(δ)

=

{
definition updtr = tr :∈ { s : seq approx(ε)(tr− t) • t⌢ s }

}
R3(tr :∈ { s : seq approx(δ)(tr− t) • t⌢ s })

⇒

 lemma: seq approx mono: δ ≤ ε ⇒ seq approx(δ)(xs) ⊆ seq approx(ε)(xs)

sets


R3(tr :∈ { s : seq approx(ε)(tr− t) • t⌢ s })

=

{
definition updtr = tr :∈ { s : seq approx(ε)(tr− t) • t⌢ s }

}
upd tr(ε)

A consequence is that Approx is also antimonotonic in its tolerance.
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Lemma 57 (Left Antimonotonicity of Approx).

δ ≤ ε ⇒ (Approx(ε)(P) ⊑ Approx(δ)(P))

Proof. Directly from the antimonotonicity of upd tr.

Process approximation is an R-closure. That is, if P is R-healthy, then so is the
simulation Approx(ε)(P).

Theorem 10 (Approx closure). An approximated process is a reactive process:

Approx(ε)(P) is R-healthy

Proof. See the following reactive healthiness lemmas.

First, the approximated process is R1-healthy.

Lemma 58 (Approx R1 closed). Approx is R1:

Approx(ε)(R1(P)) = R1(Approx(ε)(R1(P)))

Proof.

Approx(ε)(R1(P))

=

{
definition Approx(ε)(P) = var t := tr • P+t ; upd tr(ε)

}
var t := tr • R1(P)+t ; upd tr(ε)

=

{
realtions

}
var t := tr • R1(P+t) ; R1(upd tr(ε))

=

{
relations lemma: update!!!!!: upd tr(ε) = R1(upd tr(ε))

}
var t := tr ; R1(P+t) ; R1(upd tr(ε)) ; end t

=

{
relations

}
R1(var t := tr) ; R1(P+t) ; R1(upd tr(ε)) ; R1(end t)

⇒
{

reactive

}
R1(R1(var t := tr) ; R1(P+t) ; R1(upd tr(ε)) ; R1(end t))

⇒
{

reactive

}
R1(true)
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Next, the approximated process is R2-healthy.

Lemma 59 (Approx R2 closed). Approx is R2

Proof.

R2(Approx(ε)(P))

=

 lemma: alternative definition

Approx(ε) = R3(∃ t • P[⟨⟩, t− tr/tr, tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr))


R2(∃ t • P[⟨⟩, t− tr/tr, tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr))

=

{
definition R2(P) = P[⟨⟩, tr′ − tr/tr, tr′]

}
(∃ t • P[⟨⟩, t− tr/tr, tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr))[⟨⟩, tr′ − tr/tr, tr′]

=

{
substitution

}
∃ t • P[⟨⟩, t− tr/tr, tr′][⟨⟩, tr′ − tr/tr, tr′] ∧ tr′ − tr− ⟨⟩ ∈ seq approx(ε)(t− ⟨⟩)

=

{
substitution

}
∃ t • P[⟨⟩, t− ⟨⟩/tr, tr′] ∧ tr′ − tr− ⟨⟩ ∈ seq approx(ε)(t)

=

{
sequences

}
∃ t • P[⟨⟩, t/tr, tr′] ∧ tr′ − tr ∈ seq approx(ε)(t)

=

{
logic

}
∃ s, t • (s = tr⌢ t) ∧ P[⟨⟩, t/tr, tr′] ∧ tr′ − tr ∈ seq approx(ε)(t)

=

{
sequences

}
∃ s, t • (t = s− tr) ∧ P[⟨⟩, t/tr, tr′] ∧ tr′ − tr ∈ seq approx(ε)(t)

=

{
logic

}
∃ s • P[⟨⟩, s− tr/tr, tr′] ∧ tr′ − tr ∈ seq approx(ε)(s− tr)

=

{
logic

}
∃ t • P[⟨⟩, t− tr/tr, tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr)

=

 lemma: alternative definition

Approx(ε) = R3(∃ t • P[⟨⟩, t− tr/tr, tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr))


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Approx(ε)(P)

Finally, the non-algebraic expression of the simulation clearly shows that Approx
is R3-healthy.

We now prove a few lemmas about process approximation. First, the approxima-
tion Approx(ε)(P) contains P itself. That is, processes self-approximate.

Lemma 60 (Processes Self-Approximate).

Approx(ε)(P) ⊑ P

Proof.

Approx(ε)(P)

=

{
definition Approx(ε)(P) = var t := tr • P+t ; upd tr(ε)

}
var t := tr • P+t ; upd tr(ε)

⊑
{

lemma: upd tr(ε) ⊑ upd tr(0)

}
var t := tr • P+t ; upd tr(0)

=

{
lemma: upd tr(0) = II

}
var t := tr • P+t ; II

=

{
relations

}
var t := tr • P+t

=

{
relations

}
P

Next, process approximation is antimonotonic in its tolerance.

Lemma 61 (Approx Tolerance Antimonotonic).

δ ≥ ε ∧ (P ⊑ Q) ⇒ (Approx(δ)(P) ⊑ Approx(ε)(Q))

Proof.

Approx(δ)(P)
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=

{
lemma: Approx(ε)(P) = R3(∃ t • P[t/tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr))

}
R3(∃ t • P[t/tr′] ∧ tr′ − tr ∈ seq approx(δ)(t− tr))

⊑

 lemma: δ ≥ ε ⇒ seq approx(ε)(s) ⊆ seq approx(ε)(s)

monotonicity of R3


R3(∃ t • P[t/tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr))

⊑
{

monotonicity of R3

}
R3(∃ t • Q[t/tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr))

=

{
lemma: Approx(ε)(P) = R3(∃ t • P[t/tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr))

}
Approx(ε)(Q)

Definition C.39 (Approx theory:- conformance).

Q conf(ε) P = Approx(ε)(P) ⊑ Q

We now have all the mathematical machinery to define conformance.

Definition C.40 (Conformance).

Q conf(ϵ) P =̂ Approx(ϵ)(P) ⊑ Q

This says that Q conforms to P, within the tolerance ε, iff Q is an ε-approximation
of P. Note that conformance is a kind of preorder: it is reflexive and transitive in a
certain sense. If x is a δ-approximation of y and y is a ε-approximation of z, then x
is a (δ, ε)-approximation of z. This pseudo-transitivity expresses the accumulation
of uncertainty over design steps. We prove the first result.

Lemma 62 (Conformance is reflexive).

P conf(ε) P

Proof.

P conf(ε) P

=

{
definition Q conf(ϵ) P =̂ Approx(ϵ)(P) ⊑ Q

}
Approx(ε)(P) ⊑ P

=

{
law: Approx(ε)(P) ⊑ P

}
true
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Transitivity is not quite so straightforward. If Q conf(ε) P and R conf(ε) Q, then
R conf(2 ∗ ε) P: the tolerances accumulate as we move down the abstraction hier-
archy. Conformance is transitive only in this sense. To prove this, we start with a
lemma that proves that value approximation is transitive in the same sense.

Lemma 63 (Value approximation is pseudo-transitive).

x ∈ approx(δ)(y) ∧ y ∈ approx(ε)(z) ⇒ x ∈ approx(δ + ε)(z)

Proof.

x ∈ approx(δ)(y) ∧ y ∈ approx(ε)(z)

=

{
lemma: x ∈ approx(ε)(y) = y− ε ≤ x ≤ y+ ε

}
y− δ ≤ x ≤ y+ δ ∧ z− ε ≤ y ≤ z+ ε

⇒
{

arithmetic

}
z− δ − ε ≤ y− δ ≤ x ∧ z+ δ + ε ≥ y+ δ ≥ x

⇒
{

arithmetic

}
z− δ − ε ≤ x ≤ z+ δ + ε

=

{
lemma: x ∈ approx(ε)(y) = y− ε ≤ x ≤ y+ ε

}
x ∈ approx(δ + ε)(z)

Now we lift this to sequences.

Lemma 64 (Sequence approximation is pseudo-transitive).

xs ∈ seq approx(δ)(ys) ∧ ys ∈ seq approx(ε)(zs) ⇒ xs ∈ seq approx(δ + ε)(zs)

Proof.

xs ∈ seq approx(δ)(ys) ∧ ys ∈ seq approx(ε)(zs)

=

 definition seq approx(ε)(xs)

= {ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i))) }


(#xs = #ys) ∧ (∀ i : domxs • xs(i) ∈ approx(δ)(ys(i))) ∧
(#ys = # zs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(zs(i)))
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=

{
logic

}
(#xs = #ys) ∧ (#ys = # zs) ∧
(∀ i : domxs • xs(i) ∈ approx(δ)(ys(i)) ∧ ys(i) ∈ approx(ε)(zs(i)))

⇒
{

lemma: x ∈ approx(δ)(y) ∧ y ∈ approx(ε)(z) ⇒ x ∈ approx(δ + ε)(z)

}
(#xs = #ys) ∧ (#ys = # zs) ∧ (∀ i : domxs • xs(i) ∈ approx(δ + ε)(zs(i)))

⇒
{

logic

}
(#xs = # zs) ∧ (∀ i : domxs • xs(i) ∈ approx(δ + ε)(zs(i)))

=

 definition seq approx(ε)(xs)

= {ys | (#ys = #xs) ∧ (∀ i : domys • ys(i) ∈ approx(ε)(xs(i))) }


xs ∈ seq approx(δ + ε)(zs)

Next, we prove that process approximation is accumulative:

Approx(δ)(Approx(ε)(P)) = Approx(δ + ε)(P)

This law is a kind of pseudo-idempotence.

Lemma 65 (Process approximation is accumulative).

Approx(δ)(Approx(ε)(P))

=

{
lemma: Approx(ε)(P) = R3(∃ t • P[t/tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr))

}
R3(∃ t • Approx(ε)(P)[t/tr′] ∧ tr′ − tr ∈ seq approx(δ)(t− tr))

=

{
lemma: Approx(ε)(P) = R3(∃ t • P[t/tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr))

}
R3(∃ t • (R3(∃ t • P[t/tr′]

∧ tr′ − tr ∈ seq approx(ε)(t− tr)))[t/tr′]

∧ tr′ − tr ∈ seq approx(δ)(t− tr))

=

{
reactive processes: R3(R3(P)) = P

}
R3(∃ t • (∃ t • P[t/tr′]

∧ tr′ − tr ∈ seq approx(ε)(t− tr))[t/tr′]

∧ tr′ − tr ∈ seq approx(δ)(t− tr))

=

{
logic

}
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R3(∃ t,u • P[u/tr′]

∧ t− tr ∈ seq approx(ε)(u− tr)

∧ tr′ − tr ∈ seq approx(δ)(t− tr))

⇒

 lemma: xs ∈ seq approx(δ)(ys) ∧ ys ∈ seq approx(ε)(zs)

⇒ xs ∈ seq approx(δ + ε)(zs)


R3(∃ t,u • P[u/tr′] ∧ tr′ − tr ∈ seq approx(δ + ε)(u− tr))

=

{
lemma: Approx(ε)(P) = R3(∃ t • P[t/tr′] ∧ tr′ − tr ∈ seq approx(ε)(t− tr))

}
Approx(δ + ε)(P)

Now, we can prove that conformance is pseudo-transitive.

Lemma 66 (Conformance is pseudo-transitive).

R conf(ε) Q ∧ Q conf(δ) P⇒ R conf(δ + ε) P

Proof.

(Q conf(δ) P) ∧ (R conf(ε) Q)

=

{
definition Q conf(ε) P = Approx(ε)(P) ⊑ Q

}
(Approx(δ)(P) ⊑ Q) ∧ (Approx(ε)(Q) ⊑ R)

⇒
{

lemma: right-monotonicity of Approx

}
(Approx(ε)(Approx(δ)(P)) ⊑ Approx(ε)(Q)) ∧ (Approx(ε)(Q) ⊑ R)

⇒
{

transitivity of refinement

}
Approx(ε)(Approx(δ)(P)) ⊑ R

⇒
{

lemma: Approx(ε)(Approx(δ)(P)) = Approx(δ + ε)(P)

}
Approx(δ + ε)(P) ⊑ R

=

{
definition Q conf(ε) P = Approx(ε)(P) ⊑ Q

}
R conf(δ + ε) P

The approximation of a reactive process is itself a reactive process, sowe can calcu-
late its precondition and postcondition. The next two lemmas does just that.
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Lemma 67 (Approx theory:- precondition 1).

¬ (Approx(ε)(R3(P1 |= P2)))ff = ok ∧ ∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

Lemma 68 (Approx theory:- postcondition).

(Approx(ε)(R3(P1 |= P2)))tf

= ok ∧ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′])

⇒ (∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′])

We can put these two results together to expand an approximated reactive de-
sign.

Theorem 11 (Approx theory:- approx R3-R1-design expand).

Approx(ε)(R3(P1 |= P2)) = R3(∃ tr0 : seq approx(ε)(tr′ − tr) • (P1 |= P2)[tr⌢ tr0/tr′])

If x approxmiates y within ε, then y also approxmiates x within ε. xxxxx

Lemma 69 (Approx theory:- approx-symmetry).

x ∈ approx(ε)(y) = y ∈ approx(ε)(x)

We give the formal definition of upd tr, which requires that the free variable t is a
prefix of the trace tr for tr− t to be well defined.

Definition C.41 (Approx theory:- upd tr).

(t ≤ tr) ⇒ upd tr(ε) = tr :∈ { s : seq approx(ε)(tr− t) • t⌢ s }

Despite the change that upd tr makes, Approx is still R1-healthy.

Lemma 70 (Approx theory:- Approx is R1).

Approx(ε)(P) = R1(Approx(ε)(P))

Now we have the formal definition of Approx.

Definition C.42 (Approx theory:- Approx).

Approx(ε)(P) = (var t := tr • P+t ; updtr(ε))

Here are the properties.

Law C.43. Approx theory:- approx interval

x ∈ approx(ε)(y) = y− ε ≤ x ≤ y+ ε
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Definition C.44 (Approx theory:- value approximation).

y ∈ approx(ε)(y) = x− ε ≤ y ≤ x+ ε

Lemma 71 (Approx theory value approx symmetry).

x ∈ approx(ε)(y) = y ∈ approx(ε)(x)

Proof.

x ∈ approx(ε)(y)

=

 Law C.43: Approx theory:- approx interval:

x ∈ approx(ε)(y) = y− ε ≤ x ≤ y+ ε


y− ε ≤ x ≤ y+ ε

=

 Arithmetic theory:- chained inequality:

(a ≤ b ≤ c) = (a ≤ b) ∧ (b ≤ c)


y− ε ≤ x ∧ x ≤ y+ ε

=

 Arithmetic theory:- additive invariance:

(a− c ≤ b) = (a ≤ b+ c)


y ≤ x+ ε ∧ x− ε ≤ y

=

 Arithmetic theory:- chained inequality:

(a ≤ b ≤ c) = (a ≤ b) ∧ (b ≤ c)


x− ε ≤ y ≤ x+ ε

=

 Definition C.44: Approx theory:- value approximation:

y ∈ approx(ε)(y) = x− ε ≤ y ≤ x+ ε


y ∈ approx(ε)(x)

The following law is need to prove that Approx is well defined.

Law C.45 (Relation theory:- initialised alphabet-extension). For R1-healthy P:

(t := tr ; P+t) ⇒ (t′ ≤ tr′)

Lemma 72 (Approx theory:- well-definedness of upd tr ).

(t := tr ; P+t) ⇒ (t′ ≤ tr′)
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Proof.

t := tr ; P+t

=

 assumption:

P is R1


t := tr ; (R1(P))+t

=

 Definition C.12: Design theory:- R1:

R1(P) = P ∧ (tr ≤ tr′)


t := tr ; (P ∧ (tr ≤ tr′))+t

=

 Definition C.5: Relation theory:- alphabet extension:

P+x = P ∧ (x′ = x)


t := tr ; P ∧ (tr ≤ tr′) ∧ (t′ = t)

=

 Law C.4: Relation theory:- leading assignment:

x := e ; P = P[e/x]


(P ∧ (tr ≤ tr′) ∧ (t′ = t))[tr/t]

=

{
Logic theory:- substitution

}
(P ∧ (tr ≤ tr′))[tr/t] ∧ (t′ = t)[tr/t]

=

{
Logic theory:- substitution

}

=

 assumption:

t not free in P


P ∧ (tr ≤ tr′) ∧ (t′ = t)[tr/t]

=

{
Logic theory:- substitution

}
P[tr/t] ∧ (tr ≤ tr′) ∧ (t′ = tr)

=

{
Logic theory:- Leibniz:

}
P ∧ (tr ≤ tr′) ∧ (t′ = tr)

⇒
{

Logic theory:- propositions:

}
(t′ ≤ tr′)
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Lemma 73 (Expand Approx).

Approx(ε)(P) = (∃ tr0 • P[tr⌢ tr0, tr/tr′, t′] ∧ (tr ≤ tr′) ∧ tr0 ∈ seq approx(ε)(tr′ − tr))

Proof.

Approx(ε)(P)

=

 Lemma 70: Approx theory:- Approx is R1:

Approx(ε)(P) = R1(Approx(ε)(P))


R1(Approx(ε)(P))

=

 Definition C.12: Design theory:- R1:

R1(P) = P ∧ (tr ≤ tr′)


Approx(ε)(P) ∧ (tr ≤ tr′)

=

 Definition C.42: Approx theory:- Approx:

Approx(ε)(P) = (var t := tr • P+t ; updtr(ε))


(vart := tr • P+t ; updtr(ε)) ∧ (tr ≤ tr′)

=

 Law C.45: Relation theory:- initialised alphabet-extension:

(t := tr ; P+t) ⇒ (t′ ≤ tr′)


(vart := tr • P+t ∧ (t′ ≤ tr′) ; updtr(ε)) ∧ (tr ≤ tr′)

=

 Law C.45: Relation theory:- initialised alphabet-extension:

(t := tr ; P+t) ⇒ (t′ ≤ tr′)


(vart := tr • P+t ; (t ≤ tr) ∧ updtr(ε)) ∧ (tr ≤ tr′)

=

 Definition: C.3: Relation theory:- initialised block:

x not free in e⇒ ((var x := e • P) = (∃x,x′ • P[e/x]))


(∃ t, t′ • ((t = tr) ∧ P+t ; (t ≤ tr) ∧ upd tr(ε))) ∧ (tr ≤ tr′)

=

 Definition C.2: Relation theory:- sequence:

P ; Q = ∃x0 • P[x0/x′] ∧ Q[x0/x]


(∃ t, t′, tr0, t0 • ((t = tr) ∧ P+t)[tr0, t0/tr′, t′] ∧ ((t ≤ tr) ∧ upd tr(ε))[tr0, t0/tr, t]) ∧ (tr ≤ tr′)

=

 Definition C.5: Relation theory:- alphabet extension:

P+x = P ∧ (x′ = x)


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(∃ t, t′, tr0, t0 • ((t = tr)

∧ P

∧ (t′ = t))[tr0, t0/tr′, t′]

∧ ((t ≤ tr)

∧ upd tr(ε))[tr0, t0/tr, t])

∧ (tr ≤ tr′)

=

{
Logic theory:- substitution :

}
(∃ t, t′, tr0, t0 • (t = tr)

∧ P[tr0, t0/tr′, t′]

∧ (t0 = t)

∧ ((t ≤ tr)

∧ upd tr(ε))[tr0, t0/tr, t])

∧ (tr ≤ tr′)

=

{
Logic theory:- predicates

}
(∃ t′, tr0, t0 • P[tr0, t0/tr′, t′] ∧ (t0 = tr) ∧ ((t ≤ tr) ∧ upd tr(ε))[tr0, t0/tr, t]) ∧ (tr ≤ tr′)

=

{
Logic theory:- predicates

}
(∃ tr0, t0 • P[tr0, t0/tr′, t′] ∧ (t0 = tr) ∧ ((t ≤ tr) ∧ upd tr(ε))[tr0, t0/tr, t]) ∧ (tr ≤ tr′)

=

{
Logic theory:- predicates

}
(∃ tr0 • P[tr0, tr/tr′, t′] ∧ ((t ≤ tr) ∧ upd tr(ε))[tr0, tr/tr, t]) ∧ (tr ≤ tr′)

=

 Definition C.41: Approx theory:- upd tr:

(t ≤ tr) ⇒ upd tr(ε) = tr :∈ { s : seq approx(ε)(tr− t) • t⌢ s }


(∃ tr0 • P[tr0, tr/tr′, t′] ∧ (tr′ ∈ { s : seq approx(ε)(tr− t) • t⌢ s })[tr0, tr/tr, t]) ∧ (tr ≤ tr′)

=

{
Logic theory:- substitution :

}
(∃ tr0 • P[tr0, tr/tr′, t′] ∧ tr′ ∈ { s : seq approx(ε)(tr0 − tr) • tr⌢ s }) ∧ (tr ≤ tr′)

=

 Set theory:- comprehension:

x ∈ {y : T • f(y) } = ∃y : T • (x = f(y))


(∃ tr0 • P[tr0, tr/tr′, t′] ∧ ∃ s : seq approx(ε)(tr0 − tr) • (tr′ = tr⌢ s)) ∧ (tr ≤ tr′)
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=

 Sequence theory:- difference:

(u ≤ s) ⇒ (s = t⌢ u) = (t = s− u)


(∃ tr0 • P[tr0, tr/tr′, t′] ∧ ∃ s : seq approx(ε)(tr0 − tr) • (s = tr′ − tr)) ∧ (tr ≤ tr′)

=

{
Logic theory:- predicates

}
(∃ tr0 • P[tr0, tr/tr′, t′] ∧ tr′ − tr ∈ seq approx(ε)(tr0 − tr)) ∧ (tr ≤ tr′)

=

{
Logic theory:- predicates

}
(∃ tr0, tr1 • (tr1 = tr0 − tr) ∧ P[tr0, tr/tr′, t′] ∧ tr′ − tr ∈ seq approx(ε)(tr1)) ∧ (tr ≤ tr′)

=

 Sequence theory:- difference:

(u ≤ s) ⇒ (s = t⌢ u) = (t = s− u)


(∃ tr0, tr1 • (tr0 = tr⌢ tr1) ∧ P[tr0, tr/tr′, t′] ∧ tr′ − tr ∈ seq approx(ε)(tr1)) ∧ (tr ≤ tr′)

=

{
Logic theory:- predicates

}
(∃ tr1 • P[tr⌢ tr1, tr/tr′, t′] ∧ tr′ − tr ∈ seq approx(ε)(tr1)) ∧ (tr ≤ tr′)

=

{
Logic theory:- predicates

}
(∃ tr0 • P[tr⌢ tr0, tr/tr′, t′] ∧ tr′ − tr ∈ seq approx(ε)(tr0)) ∧ (tr ≤ tr′)

=

 Lemma 69: Approx theory:- approx-symmetry:

x ∈ approx(ε)(y) = y ∈ approx(ε)(x)


(∃ tr0 • P[tr⌢ tr0, tr/tr′, t′] ∧ tr0 ∈ seq approx(ε)(tr′ − tr)) ∧ (tr ≤ tr′)

=

{
Logic theory:- propositions:

}
(∃ tr0 • P[tr⌢ tr0, tr/tr′, t′] ∧ (tr ≤ tr′) ∧ tr0 ∈ seq approx(ε)(tr′ − tr))

Corollary C.46 (Approx theory:- Approx is a reactive design).

Approx(ε)(P) = R3(¬ (Approx(ε)(P))ff |= (Approx(ε)(P))tf)

Proof. Approx(ε)(P) is a CSP process.
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Lemma 74 (Approx theory:- reactive design not waiting).

Approx(ε)(R3(P1 |= P2))f

= ∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

⊢

∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′]

Proof.

(Approx(ε)(R3(P1 |= P2)))f

=

 Theorem 11: Approx theory:- approx R3-R1-design expand:

Approx(ε)(R3(P1 |= P2)) = R3(∃ tr0 : seq approx(ε)(tr′ − tr) • (P1 |= P2)[tr⌢ tr0/tr′])


(R3(∃ tr0 : seq approx(ε)(tr′ − tr) • (R3(P1 |= P2))[tr⌢ tr0/tr′]))f

=

 Lemma 31: CSP theory:- R3 not waiting:

(R3(P))f = Pf


(∃ tr0 : seq approx(ε)(tr′ − tr) • (R3(P1 |= P2))[tr⌢ tr0/tr′])f

=

{
Logic theory:- substitution

}
∃ tr0 : seq approx(ε)(tr′ − tr) • ((R3(P1 |= P2))[tr⌢ tr0/tr′])f

=

{
Logic theory:- substitution

}
∃ tr0 : seq approx(ε)(tr′ − tr) • (R3(P1 |= P2))tf[tr

⌢ tr0/tr′]

=

 Lemma 31: CSP theory:- R3 not waiting:

(R3(P))f = Pf


∃ tr0 : seq approx(ε)(tr′ − tr) • (P1 |= P2)tf[tr

⌢ tr0/tr′]

=

 Lemma 30: Design theory:- R1 design not waiting:

(P |= Q)f = (Pf |= Qf)


∃ tr0 : seq approx(ε)(tr′ − tr) • (P1f |= P2f)[tr

⌢ tr0/tr′]

=

 Definition C.13: Design theory:- R1-design:

(P |= Q) = R1(P ⊢ Q)


∃ tr0 : seq approx(ε)(tr′ − tr) • (P1f ⊢ R1(P2f))[tr⌢ tr0/tr′]
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=

 Definition C.12: Design theory:- R1:

R1(P) = P ∧ (tr ≤ tr′)


∃ tr0 : seq approx(ε)(tr′ − tr) • (P1f ⊢ P2f ∧ (tr ≤ tr′))[tr⌢ tr0/tr′]

=

 Lemma 28: Design theory:- design-substitution:

x isn’t {ok,ok′} ⇒ (P ⊢ Q)[e/x] = (P[e/x] ⊢ Q[e/x])


∃ tr0 : seq approx(ε)(tr′ − tr) • (P1tf[tr

⌢ tr0/tr′] ⊢ P2tf[tr
⌢ tr0/tr′] ∧ (tr ≤ tr⌢ tr0))

=

 Sequence theory:- monotonicity:

s ≤ s⌢ t


∃ tr0 : seq approx(ε)(tr′ − tr) • (P1tf[tr

⌢ tr0/tr′] ⊢ P2tf[tr
⌢ tr0/tr′])

=

 Law C.11: Design theory:- existential design:

(∃x • (P ⊢ Q)) = (∀x • P ⊢ ∃ x • Q)


∀ tr0 : seq approx(ε)(tr′ − tr) • P1tf[tr

⌢ tr0/tr′]

⊢

∃ tr0 : seq approx(ε)(tr′ − tr) • P2tf[tr
⌢ tr0/tr′]

Lemma 75 (Approx theory:- Approx precondition).

¬ (Approx(ε)(R3(P1 |= P2)))ff = ok ∧ ∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

Proof.

¬ Approx(ε)(R3(P1 |= P2))ff

=



Approx theory:- reactive design not waiting:

Approx(ε)(R3(P1 |= P2))f

= ∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

⊢

∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′]


¬ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

⊢

∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′])f
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=

 Law: C.9: Design theory:- abort:

(P ⊢ Q)f = ok⇒ Pf


¬ (ok⇒ ¬ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′])f)

=

{
Logic theory:- predicates

}
ok ∧ ∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]f

Lemma 76 (Approx theory:- Approx postcondition).

(Approx(ε)(R3(P1 |= P2)))tf

=

ok ∧ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′])

⇒

(∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′])

Proof.

(Approx(ε)(R3(P1 |= P2)))tf

=



Approx theory:- reactive design not waiting:

Approx(ε)(R3(P1 |= P2))f

= ∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

⊢

∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′]


(∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

⊢

∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′]

)t

=

{
Law C.10: Design theory:- not abort: (P ⊢ Q)t = (ok ∧ Pt ⊢ Qt)

}
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ok

∧ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′])

⇒

(∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′])

Corollary C.47 (Approx theory:- Approx reactive design).

Approx(ε)(R3(P1 |= P2))

= R3(∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

|=

∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′])

Proof.

Approx(ε)(R3(P1 |= P2))

=

 Theorem C.22: CSP theory:- R3-R1-design process:

P is R2-healthy ⇒ P = R3(¬ Pff |= Ptf)


R3(¬ (Approx(ε)(R3(P1 |= P2)))ff |= (Approx(ε)(R3(P1 |= P2)))tf)

=



Lemma 67: Approx theory:- precondition 1:

¬ (Approx(ε)(R3(P1 |= P2)))ff = ok ∧ ∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

|

Lemma 68: Approx theory:- postcondition:

(Approx(ε)(R3(P1 |= P2)))tf

= ok ∧ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′])

⇒ (∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′])


R3(ok ∧ ∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

|=

ok ∧ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′])

⇒

(∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′])

)
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=



Lemma C.14: Design theory:- R1-design ok pre:

(P |= Q) = (ok ∧ P |= Q)

|

Lemma C.16: Design theory:- R1-design ok post:

(P |= Q) = (P |= ok ∧ Q)


R3(∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

|=

(∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′])

⇒

(∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′])

)

=

 Lemma C.15: Design theory:- R1-design precondition simp:

(P |= P ∧ Q) = (P |= Q)


R3(∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

|=

∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′]

)

Our next theorem is about the conformance between two reactive designs, ex-
panding the algebraic statement of conformance. It replaces the conformance
statement with two assertions, which are sound conditions for approximate con-
formance between two reactive designs under the healthiness condition R3, which
distinguishes between waiting and final states. If the reactive design R3(Q1 |= Q2)
conforms within ε to the reactive design R3(P1 |= P2), then we have:

1. An assertion about the two preconditions:

[ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ⇒ Q1 ]

If every trace tr′ observed by Q could have been approximated, within ε, by
extending some trace tr accepted by P, and if under that approximation the
specification’s precondition P1 would have held, then we may conclude that
the implementation’s precondition Q1 must also hold.

In other words, if the specification would have accepted a close enough trace,
then the implementation must not reject it. This reflects a robust precon-
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dition guarantee: the implementation’s admissible behaviours include all ε-
perturbed variations of the specification’s precondition.

2. An assertion about the two postconditions:

(∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ∧ R1(Q2)

⇒ ∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′] ]

Premise 1 The specification would have accepted any ε-close trace:

∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

Every trace tr′ that the implementationmay have produced is ε-approximated
by some trace tr⌢ tr0, and the specification’s precondition P1 holds under
that approximated trace. So: we are assuming that the implementation’s
observed behaviour lies within an ε-margin of something the specification
would have allowed.

Premise 2 The implementation behaves reactively well:

R1(Q2)

This is the R1 healthiness condition, which ensures trace monotonicity:
the implementation’s postcondition is well-behaved in terms of reactive
extensions (e.g., appending to traces preserves feasibility). It’s a techni-
cal condition needed to ensure that implementation behaviour does not
cheat by shrinking or invalidating its own trace history.

Conclusion The specification can match some ε-close behaviour:

∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′]

There exists a trace close to what the implementation produced such that
the specification’s postcondition P2 holds under that approximation.

Why does this matter? This is a trace-based lifting of value-level approximation:
we are asserting that the implementation tolerates all ε-close observations of the
specification. It is a forward-closed and over-approximating condition: the imple-
mentation may admit more behaviours, but all must be close to permitted specifi-
cation behaviours. It is essential for sound reasoning in the presence of numerical
error, rounding, or learned variability in reactive neural systems.

Here, at last, is the statement and proof of the theorem:

Theorem 12 (CSP theory:- reactive-design conformance).

R3(Q1 |= Q2) conf(ε) R3(P1 |= P2)

= [ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ⇒ Q1 ]

∧

[ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ∧ R1(Q2)

⇒ ∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′] ]
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Proof.

R3(Q1 |= Q2) conf(ε) R3(P1 |= P2)

=

 Definition C.39: Approx theory:- conformance:

Q conf(ε) P = Approx(ε)(P) ⊑ Q


Approx(ε)(R3(P1 |= P2)) ⊑ R3(Q1 |= Q2)

=

 Theorem 11: Approx theory:- approx R3-R1-design expand:

Approx(ε)(R3(P1 |= P2)) = R3(∃ tr0 : seq approx(ε)(tr′ − tr) • (P1 |= P2)[tr⌢ tr0/tr′])


R3(∃ tr0 : seq approx(ε)(tr′ − tr) • (P1 |= P2)[tr⌢ tr0/tr′]) ⊑ R3(Q1 |= Q2)

⇐=

 Theorem C.23: CSP theory:- R3-monotonicity:

(P ⊑ Q) ⇒ (R3(P) ⊑ R3(Q))


(∃ tr0 : seq approx(ε)(tr′ − tr) • (P1 |= P2)[tr⌢ tr0/tr′]) ⊑ (Q1 |= Q2)

=

 Definition C.13: Design theory:- R1-design:

(P |= Q) = R1(P ⊢ Q)


(∃ tr0 : seq approx(ε)(tr′ − tr) • (P1 ⊢ R1(P2))[tr⌢ tr0/tr′]) ⊑ (Q1 ⊢ R1(Q2))

=

 Lemma 28: Design theory:- design-substitution:

x isn’t {ok,ok′} ⇒ (P ⊢ Q)[e/x] = (P[e/x] ⊢ Q[e/x])


(∃ tr0 : seq approx(ε)(tr′ − tr) • (P1[tr⌢ tr0/tr′] ⊢ (R1(P2))[tr⌢ tr0/tr′]))

⊑ (Q1 ⊢ R1(Q2))

=

 Law C.11: Design theory:- existential design:

(∃x • (P ⊢ Q)) = (∀x • P ⊢ ∃ x • Q)


(∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]

⊢

∃ tr0 : seq approx(ε)(tr′ − tr) • (R1(P2))[tr⌢ tr0/tr′])

⊑ (Q1 ⊢ R1(Q2))

=

 Theorem 6: Design theory:- design refinement:

((P1 ⊢ P2) ⊑ (Q1 ⊢ Q2)) = [P1 ⇒ Q1] ∧ [P1 ∧ Q2 ⇒ P2]


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[(∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ⇒ Q1]

∧

[(∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ∧ Q2

⇒ ∃ tr0 : seq approx(ε)(tr′ − tr) • (R1(P2))[tr⌢ tr0/tr′]]

We prove the following result in the predicate calculus before using it in the next
theorem.

Lemma 77 (Internal choice:- predicate).

((∀x • P1(x)) ∧ R2 ⇒ ∃ x • P2(x)) ∧ ((∀x • Q1(x)) ∧ S2 ⇒ ∃ x • Q2(x))

∧ (∀x • P1(x) ∧ Q1(x)) ∧ (R2 ∨ S2)

⇒ ∃ x • P2(x) ∨ Q2(x)

Proof. We are given:

1. (∀x • P1(x)) ∧ R2 ⇒ ∃ x • P2(x)

2. (∀x • Q1(x)) ∧ S2 ⇒ ∃ x • Q2(x)

3. ∀x • P1(x) ∧ Q1(x)

4. R2 ∨ S2

We want to prove:

∃x • P2(x) ∨ Q2(x)

From assumption (3), we have:

∀x • P1(x) and ∀x • Q1(x)

via conjunction elimination. Now consider (4), R2 ∨ S2, and proceed by case anal-
ysis:

Case 1: R2 From (1) and knowing forallx • P1(x) and R2, we conclude:

∃x • P2(x)

Then, since ∃x • P2(x) ⇒ ∃ x • P2(x) ∨ Q2(x) (disjunction introduction), we get
the goal.

Case 2: S2 From (2) and ∀x • Q1(x) and S2, we conclude:

∃x • Q2(x)

Then, again using disjunction introduction:

∃x • P2(x) ∨ Q2(x)
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In both cases, we obtain the desired disjunction inside the existential. Thus, by
disjunction elimination and universal instantiation, the conclusion follows:

∃x • P2(x) ∨ Q2(x)

The next theorem is currently our key result: monotonicity of internal choice with
respewct to conformance. If two implementations R and S each conform approxi-
mately (within ε ) to specifications P and Q respectively, then a system that nonde-
terministically chooses between R and S also conforms (within ε ) to a specification
that nondeterministically chooses between P and Q .

Why does this matter? It ensures that approximate correctness is preserved under
nondeterministic composition. In reactive or neural systems, R and S might rep-
resent different learned controllers or operational modes. The specification allows
the system to behave either as P or Q. This theorem tells us that as long as each
controller conforms individually, the overall controller (which switches between
them nondeterministically) still conforms—within the same ε bound.

Why is it sound? The logic behind this is that conformance is defined pointwise:
If all behaviours of R are ε-approximated by P, and similarly for S and Q, then any
behaviour of R⊓S is a behaviour of either R or S. So it must be ε-approximated by
some behaviour of either P or Q, which are the behaviours of P ⊓Q.

Formally, conformance is defined as: R conf(ε) P = R ⊑ Approx(ε)(P). Since refine-
ment is preserved by internal choice (as we have shown earlier in our reactive de-
sign laws), and approximation is disjunctive (i.e., Approx(ε)(P⊓Q) = Approx(ε)(P)⊓
Approx(ε)(Q)), the result follows.

What is the practical relevance of this theorem? If each of two implementation
processes conforms approximately (within the same tolerance ε) to its respective
specification, then their nondeterministic combination also conforms—under the
same ε bound—to the nondeterministic combination of the specifications.

This property ensures that approximate conformance is compositional with respect
to internal choice. In practice, it means that we can verify components of a system
in isolation and then soundly infer approximate correctness of a nondeterministic
combination of those components. The result is particularly relevant when mod-
elling systems that include mode switches, failovers, or learned behaviours from
multiple networks. It guarantees that combining approximate implementations us-
ing internal choice cannot lead to an overall violation of the specification, as long
as each branch is itself conformant.

Theorem 13 (Conformance theory:- conformance internal choice monotonicity).

(R conf(ε) P) ∧ (S conf(ε) Q) ⇒ (R ⊓ S conf(ε) P ⊓Q)

Proof. We start by expanding the goal: (R⊓S conf(ε) P⊓Q). It is sufficient to prove
this for explicit reactive designs:

P = R3(P1 |= P2), Q = R3(Q1 |= Q2), R = R3(R1 |= R2), and S = R3(S1 |=
S2).
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We use these explicit reactive designs in our goal and expand it accordingly:

(R3(R1 |= R2) ⊓ R3(S1 |= S2)) conf(ε) (R3(P1 |= P2) ⊓ R3(Q1 |= Q2))

=

 Lemma CSP theory internal choice reactive design :

R3(P1 |= P2) ⊓ R3(Q1 |= Q2) = R3(P1 ∧ Q1 |= P2 ∨ Q2)


R3(R1 ∧ S1 |= R2 ∨ S2) conf(ε) R3(P1 ∧ Q1 |= P2 ∨ Q2)

=



Theorem 12: CSP theory:- reactive-design conformance:

R3(Q1 |= Q2) conf(ε) R3(P1 |= P2)

= [ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ⇒ Q1 ]

∧

[ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ∧ R1(Q2)

⇒ ∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′] ]


[ (∀ tr0 : seq approx(ε)(tr′ − tr) • (P1 ∧ Q1)[tr⌢ tr0/tr′]) ⇒ R1 ∧ S1 ] (SG1)

∧

[ (∀ tr0 : seq approx(ε)(tr′ − tr) • (P1 ∧ Q1)[tr⌢ tr0/tr′]) ∧ R1(R2 ∨ S2) (SG2)

⇒ ∃ tr0 : seq approx(ε)(tr′ − tr) • (P2 ∨ Q2)[tr⌢ tr0/tr′] ]

We refer to these as the first and second subgoals, (SG1) and (SG2), respectively.
Rewriting the assumptions:

R3(R1 |= R2) conf(ε) R3(P1 |= P2) ∧ R3(S1 |= S2) conf(ε) R3(Q1 |= Q2)

⇒



Theorem 12: CSP theory:- reactive-design conformance:

R3(Q1 |= Q2) conf(ε) R3(P1 |= P2)

= [ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ⇒ Q1 ]

∧

[ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ∧ R1(Q2)

⇒ ∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′] ]


((∀ tr0 : seq approx(ε)(tr′ − tr) • Q1[tr⌢ tr0/tr′]) ⇒ S1)

∧

((∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ⇒ R1)

⇒
{

Logic theory:- predicates

}
(∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ∧ Q1[tr⌢ tr0/tr′]) ⇒ R1 ∧ S1
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=

{
Logic theory:- substitution

}
(∀ tr0 : seq approx(ε)(tr′ − tr) • (P1 ∧ Q1)[tr⌢ tr0/tr′]) ⇒ R1 ∧ S1

which discharges the first subgoal (SG1). Now we turn to (SG2).

R3(R1 |= R2) conf(ε) R3(P1 |= P2) ∧ R3(S1 |= S2) conf(ε) R3(Q1 |= Q2)

⇒



Theorem 12: CSP theory:- reactive-design conformance:

R3(Q1 |= Q2) conf(ε) R3(P1 |= P2)

= [ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ⇒ Q1 ]

∧

[ (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ∧ R1(Q2)

⇒ ∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′] ]


( (∀ tr0 : seq approx(ε)(tr′ − tr) • P1[tr⌢ tr0/tr′]) ∧ R1(R2)

⇒ ∃ tr0 : seq approx(ε)(tr′ − tr) • P2[tr⌢ tr0/tr′] )

∧

( (∀ tr0 : seq approx(ε)(tr′ − tr) • Q1[tr⌢ tr0/tr′]) ∧ R1(S2)

⇒ ∃ tr0 : seq approx(ε)(tr′ − tr) • Q2[tr⌢ tr0/tr′] )

⇒



Lemma 77: Internal choice:- predicate:

((∀x • P1(x)) ∧ R2 ⇒ ∃ x • P2(x)) ∧ ((∀x • Q1(x)) ∧ S2 ⇒ ∃ x • Q2(x))

∧ (∀x • P1(x) ∧ Q1(x)) ∧ (R2 ∨ S2)

⇒ ∃ x • P2(x) ∨ Q2(x)


(∀ tr0 : seq approx(ε)(tr′ − tr) • (P1 ∧ Q1)[tr⌢ tr0/tr′]) ∧ R1(R2 ∨ S2)

⇒ ∃ tr0 : seq approx(ε)(tr′ − tr) • (P2 ∨ Q2)[tr⌢ tr0/tr′]

A weaker result would be to let the two bounds be different. This would perhaps
give a result that the nondeterministic choice conforms to the maximum of the two
bounds.

We list some laws of the relational calculus in Table 4; we list laws of set theory in
Table ??; we list laws of the theory of sequences in Table ??.

We take the following law for a local block from the theory of reactive processes
(see Hoare and He [HJ98a, Chap. 8]). The assignment in the process var x := e • P
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1. left unit P = II ; P
2. right unit P = P ; II
3. identity trace II ⇒ (tr′ = tr)
4. identity lifting II+x(α) = II(α ∪ {x})
5. identity extension II(α)+x = II(α ∪ {x})
6. introduce local block fresh x⇒ (P = var x := e • P+x)
7. assignment one point x :∈ {e} = x := e
8. identity assignment II(w) = w := w
9. leading assignment x not free in e⇒ (x := e ; P = P[e/x])
10. alphabet extension P+x = P ∧ (x′ = x)
11. refinement monotonicity (P ⊑ Q) ⇒ (P ; R ⊑ Q ; R)
12. refinement transitivity (P ⊑ Q) ∧ (Q ⊑ R) ⇒ P ⊑ R
13. variable block separation var x := e • P = var x := e ; P ; end x
14. variable block is R1???
15. Relations theory:- sequential composition

P ;v Q

Table 4: Some laws of the relational calculus

uses a law similar to the “leading assignment” in the refinement calculus [Mor94].
We substitute e for the initial value of x, and the result is varx • P[e/x]. Suppose
we also know that x not free in e, then we can remove the declaration of x. This
transformation is valid only if any preceding process has terminated. If it has not,
the process var x := e • P must behave as II. We cover this case by applying the
healthiness condition R3. This derivation explains the law:

x not free in e⇒ ((var x := e • P) = R3(P[e/x]))

We use this law to simplify the algebraic definition of our simulation.

We use the sequence difference operator in the simulation’s algebraic and non-
algebraic statements. The next lemma establishes that this is well-defined.

Lemma 78 (Well-definedness of upd tr(ϵ)).

t := tr ; P+t

=
{
relations: leading assignment: x not free in e⇒ (x := e ; P = P[e/x])

}
(P+t)[tr/t]

=
{
relations: alphabet extension: P+x = P ∧ (x′ = x)

}
(P ∧ (t′ = t))[tr/t]

= {assumption: P is R1 }
(P ∧ tr ≤ tr′ ∧ (t′ = t))[tr/t]

= { logic: substitution }
P[tr/t] ∧ tr ≤ tr′ ∧ (t′ = tr)

⇒ { logic }
t′ ≤ tr′

????????
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???????

We note that the update relation is not a process. It is not R1. Neither is it R2.
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D Identifying Uncertainty in Self-Adaptive Robotics with
Large Language Models

The appended paper follows.
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ABSTRACT

Future self-adaptive robots are expected to operate in highly dynamic environments while effectively
managing uncertainties. However, identifying the sources and impacts of uncertainties in such
robotic systems and defining appropriate mitigation strategies is challenging due to the inherent
complexity of self-adaptive robots and the lack of comprehensive knowledge about the various factors
influencing uncertainty. Hence, practitioners often rely on intuition and past experiences from similar
systems to address uncertainties. In this article, we evaluate the potential of large language models
(LLMs) in enabling a systematic and automated approach to identify uncertainties in self-adaptive
robotics throughout the software engineering lifecycle. For this evaluation, we analyzed 10 advanced
LLMs with varying capabilities across four industrial-sized robotics case studies, gathering the
practitioners’ perspectives on the LLM-generated responses related to uncertainties. Results showed
that practitioners agreed with 63–88% of the LLM responses and expressed strong interest in the
practicality of LLMs for this purpose.

Keywords Self-Adaptive Systems · Robotics · Uncertainty · Large Language Models

1 Introduction

Self-adaptive robotics refers to robotic systems that autonomously adjust their behavior, configuration, or decision-
making processes in response to environmental changes and unforeseen circumstances [1]. A fundamental framework for
enabling self-adaptation in such systems is the MAPE-K (Monitoring, Analysis, Planning, Execution, and Knowledge)
loop, which employs advanced techniques such as artificial intelligence and data analysis to allow robots to continuously
collect and analyze data, plan and validate actions, execute adaptive behaviors, and refine decisions using a dynamic
knowledge base [2]. At this level of autonomy, these robots must ensure dependability while effectively managing
uncertainty and addressing ethical considerations to operate reliably in real-world environments.

A key challenge in self-adaptive robotics is managing uncertainty throughout the entire engineering lifecycle, from
initial design to active operations [3]. Uncertainty may arise from various sources, such as unpredictable environmental
conditions, sensor and actuator noise, and human-robot and robot-robot interactions. Such factors directly influence a
robot’s dependability, ultimately impacting its overall performance and decision-making capabilities. A crucial step in
managing uncertainty within these systems is identifying the sources and potential impacts of uncertainties at early
stages of the robotics software engineering lifecycle [3]. However, it is challenging due to the inherent complexity of
self-adaptive robots, including their complex interactions, evolving configurations, and adaptive behaviors, as well as the
lack of comprehensive knowledge about unpredictable operational contexts and environmental dynamics. Consequently,
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Figure 1: Industrial context (left) and evaluation methodology overview (right). In the workflow, rounded rectangles
indicate our activities, ovals represent individual activities by the practitioners, and hexagons denote collaborative
activities.

3 Evaluation Methodology

Goal: Our goal is to evaluate the effectiveness of LLMs in identifying uncertainties in self-adaptive robotics and to
determine their practical value for the practitioners.

Figure 1 presents an overview of our evaluation methodology, encompassing the primary workflow and interactions
involving the practitioners and LLMs. Below, we elaborate on each step of the process.

Step ❶: We collected documented robotics software requirements from the practitioners. These documents included
detailed descriptions of each use case scenario, clearly specifying the operational context, expected behavior, objectives,
and constraints. Moreover, they explicitly outlined hardware characteristics, including details of sensors and actuators, as
well as thorough software requirements defining the system architecture, functionalities, and performance expectations.

Steps ❷–❸: In the second step, we designed an uncertainty questionnaire inspired by existing work [7]. This
questionnaire consisted of seven questions covering various aspects, including uncertainty sources, methods to identify
uncertainties, impacted engineering lifecycle phases, the effects of uncertainties on performance and safety, potential
mitigation strategies, real-world scenarios where uncertainties resulted in failures, and the overall impact of uncertainties
on project outcomes. We sent out this questionnaire to the practitioners from all four use cases. In the third step, based
on the practitioners’ feedback, we revised the questionnaire by rewording certain questions to enhance clarity and
comprehensibility.

Steps ❹–❻: The subsequent steps, from four to six, involve interaction with LLMs. In step four, we perform prompt
engineering to prepare prompts for LLMs. Specifically, we used the role-prompting technique, which asks the model to
assume a particular role or expertise. We provided LLMs with the requirement documents and asked them to assume
the role of expert analyst. Next, we provided step-by-step instructions to follow, which included carefully reading
and comprehending the requirements document, utilizing their robotics knowledge, understanding the purpose of the
questionnaire, and responding to questions concisely with brief justifications. After finalizing the prompt (available on
GitHub1), the subsequent steps involve iteratively prompting all selected LLMs for each case study and collecting and
compiling LLMs’ responses. Once we have obtained responses from all LLMs and case studies, the next step is to
prepare confirmation questionnaires for each partner.

Step ❼: In the seventh step, to develop confirmation questionnaires, we analyzed all responses to identify unique
responses, as we observed that some LLMs provided similar answers to specific questions during prompting. We
then incorporated all unique responses into the confirmation questionnaire, removing any indication of which LLM
generated a particular response. The resulting confirmation questionnaire contained all questions from the uncertainty

1https://github.com/Simula-COMPLEX/Prompt4RoboUI
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(a) IDR Results (b) WRS Results

(c) PHAV Results (d) HRI Results

Figure 2: Results for all LLMs across four case studies, presenting the practitioners’ assessments of LLMs’ effectiveness
in identifying uncertainties.

questionnaire and responses from different LLMs. For each LLM-generated response, we used a five-point Likert
scale to capture practitioners’ level of agreement, ranging from “strongly disagree” and “disagree” to “neutral”, “agree”
and “strongly agree”. The questionnaire was developed using Google Forms to facilitate efficient data collection and
analysis. It is important to note that the confirmation questionnaire strictly focused on evaluating the responses provided
by LLMs and did not include any questions related to personal information or participants’ identities.

Steps ❽–❾: In the eighth step, we conducted four individual in-person sessions during project meetings with the
practitioners involved in each case study. Each session included one senior and one junior participant from the respective
case study. Each session lasted 40 minutes and followed a consistent format. At the beginning of each session, we
provided participants with a concise overview of the planned activities and time allocation, presented the revised
uncertainty questionnaire, and explained the objectives and motivations of the activity. After this introductory session
of 10 minutes, we distributed the confirmation questionnaire to the participants. We allocated 20 minutes for the
questionnaire and 10 minutes of verbal discussion. During the questionnaire activity, participants were asked to assess
each response and indicate their level of agreement based on their experience and knowledge of the case study. In the
ninth step, we collected participants’ feedback on the confirmation questionnaire through Google Forms. During the
verbal discussion, we gathered participants’ opinions on the LLM-generated responses, the LLMs’ understanding of the
robotic case study, and their potential for identifying uncertainties. For this discussion, we opted to take informal notes
instead of formally recording the feedback.

Step ❿: We analyzed the data collected through Google Forms, focusing mainly on feedback from the confirmation
questionnaire. Our results are primarily derived from the responses to this questionnaire, supplemented by key
observations gathered during verbal discussions. We analyze the results for each case study, specifically examining the
agreement levels expressed by practitioners for each LLM-generated response. From this analysis, we identify and
report which LLM-generated responses were confirmed by the practitioners, highlighting the levels of consensus and
reliability for each response across all use cases. It is important to note that we obtained informed consent from the
participants involved in all case studies to report the evaluation results.

4
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4 Results and Insights

4.1 IDR Results

Figure 2(a) shows that the responses generated by GPT-4o received the highest number of agreements and the lowest
number of disagreements. The second highest number of agreements was observed for the responses generated by o1
Preview and LLama 3.3 70B. Moreover, practitioners indicated neutral agreement only for the responses generated by
Nemotron 70B and Nova Pro, at 6% and 5%, respectively. Regarding disagreements, the responses generated by Gemini
Pro 1.5, Mistral Large 2411, and Claude 3.5 Sonnet received a notably higher number of disagreements compared to
other models. Among these, practitioners strongly disagreed with most of the responses obtained from Gemini Pro 1.5
and Mistral Large 2411. For simple disagreement opinions, practitioners showed a high level of disagreement with
responses generated by LLama 3.3 70B and Claude 3.5 Sonnet at 18%, whereas responses from GPT-4o received the
lowest level of disagreement at 11%. Overall, the results indicate that practitioners agreed with more than 60% of the
LLM-generated responses, including a majority of strong agreements.

4.2 WRS Results

From Figure 2(b), it can be observed that practitioners showed a high number of strong agreements with responses
generated by Claude 3.5 Sonnet. For general agreements (including agreeing and strongly agreeing), practitioners agreed
with the responses generated by Nemotron 70B, Nova Pro, and o1 Preview. Interestingly, none of the practitioners
strongly disagreed with any of the responses. Moreover, overall disagreements are noticeable but remain up to 11%. For
the responses from Gemini Flash 2.0, the number of disagreements is low compared to other models. The percentage of
neutral agreements is 8% for the responses obtained from Gemini Pro 1.5, Perplexity Sonar, and LLama 3.3 70B. The
overall results show that the practitioners agreed with more than 80% of the LLM-generated responses, indicating the
high practicality of LLMs in this case study.

4.3 PHAV Results

Results in Figure 2(c) indicate that the responses generated by LLama 3.3 70B received the highest level of agreement
and the fewest disagreements. Following closely, the responses generated by Gemini Flash 2.0 received the second-
highest score in terms of agreement. For LLama 3.3 70B and Gemini Flash 2.0, practitioners did not indicate any
neutral agreements. In contrast, other models exhibited neutral agreements, with practitioners showing up to 4%
and 3% for responses generated by Mistral Large 2411 and o1 Preview, respectively. Furthermore, the number of
strong disagreements remains relatively low, with 3% for the responses from Mistral Large 2411, LLama 3.3 70B, and
o1 Preview, and 4% for other models. Similarly, the highest number of disagreements were observed for responses
generated by Gemini Pro 1.5, while Mistral Large 2411, LLama 3.3 70B, and o1 Preview had the lowest disagreement
rates. In general, practitioners expressed positive opinions for more than 80% of the LLM-generated responses,
highlighting the high effectiveness of LLMs.

4.4 HRI Results

Figure 2(d) shows that the practitioners strongly agreed with many of the responses (48%) generated by Perplexity Sonar
and Mistral Large 2411, followed by GPT-4o with 47% strong agreements. Notably, practitioners demonstrated strong
agreement with over 40% of all LLMs’ responses. Regarding the overall agreement, the highest number of positive
opinions were particularly observed for responses generated by Nova Pro and o1 Preview. For neutral agreements,
practitioners indicated the highest neutrality for responses generated by Perplexity Sonar, while Nova Pro received the
least. In disagreements case, practitioners strongly disagreed with the smallest percentage (4–5%) of LLM-generated
responses. In contrast, the percentage of simple disagreements ranged from 15% to 23%. Among all models, the
responses generated by Perplexity Sonar and LLama 3.3 70B had the highest number of disagreements, while fewest
disagreements were observed for Gemini Pro 1.5. Overall, practitioners provided positive opinions for more than 70%
of the responses generated by LLMs, demonstrating their usefulness for this case study.

4.5 Insights

Below, we present key insights from results analysis and discussions with practitioners.

5
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4.5.1 LLMs’ Familiarity with Domain

When we asked practitioners from all case studies whether they believed LLMs could effectively understand the case
study specifications and domain, all participants agreed that LLMs’ responses indicated a strong grasp of the case study.
This highlights LLMs’ ability to comprehend text by using the provided information about various robots and their
prior knowledge from related domains.

4.5.2 Logical Responses

We asked practitioners about their perspectives on whether LLMs’ responses were logical and contextually relevant.
All participants agreed that the responses were logical and aligned with the given context. This demonstrates LLMs’
analytical capability and their usefulness in identifying uncertainties in self-adaptive robotics.

4.5.3 Novel Uncertainties

We asked practitioners whether they found the uncertainties identified by LLMs to be realistic and whether any of them
were previously unknown yet logically valid. They unanimously agreed that the LLM-identified uncertainties were
realistic and were particularly surprised by some previously unconsidered uncertainties, which they found valuable.

4.5.4 Knowledge Gaps in Engineering Phases

During the discussion, practitioners revealed a lack of knowledge about uncertainties across different robotics software
engineering phases. Some participants were involved exclusively in development, others in testing, and some solely
in the operations phase. Those involved in the development phase had limited awareness of uncertainties that could
arise during operations, while those in the operations phase were unfamiliar with uncertainties in the design phase.
Consequently, they could not confirm uncertainties outside their expertise and either disagreed or remained neutral
when evaluating LLM-identified uncertainties related to phases they were not directly involved in.

4.5.5 Uncertainty in Engineering Phases

Although all practitioners agreed that uncertainties arise in every engineering phase, the majority emphasized that
the most uncertainties are typically encountered during the testing phase. Those involved in the operational phase
highlighted that uncertainties are equally prevalent during live operations. This was especially noticed in the autonomous
vessel case study, where real-world operations in complex environments often introduce significant environmental
uncertainties that may go undetected during simulation-based testing. Therefore, depending on the complexity and
dynamics of the environment, both the testing and operational phases are likely to encounter uncertainties. Furthermore,
all practitioners unanimously confirmed that environmental dynamics are a major source of uncertainty.

4.5.6 Managing Uncertainty

Our analysis revealed that the techniques mostly used to manage uncertainty are modeling, simulation, digital twins,
and uncertainty quantification. However, we also noticed that applying these techniques, monitoring uncertain scenarios,
and taking countermeasures require significant manual effort. This necessitates developing frameworks and tools to
support automation. In this context, we foresee significant potential for LLMs, given the usefulness demonstrated in our
evaluation.

4.5.7 LLM Recommendations

While all LLMs exhibited varying levels of usefulness in identifying uncertainties, their responses differed in depth
and detail. Models such as Claude 3.5 Sonnet generated concise responses that lacked comprehensive explanations,
whereas others, like o1 Preview, provided more detailed and well-reasoned answers for each point. This was particularly
notable when LLMs were asked to provide example uncertainty scenarios for specific robotic cases, which practitioners
endorsed and found interesting. Thus, based on the results analysis, we recommend LLama 3.3 70B, o1 Preview,
GPT-4o, Mistral Large 2411, and Nova Pro as the most effective LLMs for uncertainty analysis.

4.6 Threats to Validity

A potential threat to external validity is the limited sample size of eight practitioners in four use cases. Furthermore, the
robotic cases studied specifically focused on small subsystems dedicated to self-adaptive robotic behaviors. Therefore,
results might not generalize to all robotic systems, which is a common threat in empirical studies. An internal validity

6
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threat may occur due to participants’ personal biases and familiarity with robotic systems. Although our sessions
with practitioners involved two participants per case (one junior and one senior), their backgrounds and confidence
levels may have influenced their responses. To handle this, we included open discussions during sessions to clarify
interpretations. A potential conclusion validity threat may occur due to variability in practitioners’ experience levels and
the subjective nature of agreement measurements (i.e., Likert levels). To manage this, we used standardized procedures
in all sessions, providing clear instructions and consistent timing, although subjective assessment remains an inherent
challenge. Moreover, to address the validity threat from informal notes during verbal discussions, we sent the draft
article to all participating practitioners for review and revised it based on their feedback. A possible threat involves the
clarity of the uncertainty questionnaire and confirmation questionnaire. To mitigate this, we developed the uncertainty
questionnaire based on existing frameworks and revised it based on practitioners’ feedback. We also used the standard
Likert scale to capture agreement levels for the confirmation questionnaire precisely.

5 Related Works

Despite tremendous research efforts on identifying uncertainty in self-adaptive robots [8, 9, 10, 11, 12], a systematic
approach to identifying and mitigating uncertainties is still lacking [13]. These studies focus on specific types, sources,
and dimensions of uncertainty separately, overlooking complex interdependencies and environmental correlations [14].
Hezavehi et al. [9] conducted a field survey and identified that uncertainties in self-adaptive systems are mostly
application-dependent and rely on non-functional requirements. Chirayil et al. [12] proposed a unified classification of
anomalies for autonomous robotic missions. Similarly, Busch et al. [13] proposed a setup for identifying and quantifying
the uncertainty of the eigenfrequency in machining robots. Recently, Zheng et al. [8] developed an uncertainty-based
LLM failure detector for autonomous robots to enable efficient task planning. Moreover, Betzer et al. [15] developed a
cloud-based digital twin to enable real-time identification and mitigation of uncertainties for an autonomous mobile
robot. Compared to these studies, our work explores LLMs’ potential in systematically identifying uncertainties in
self-adaptive robotics.

6 Conclusion

We evaluated the LLMs’ potential to support uncertainty identification in four industrial-sized self-adaptive robotic cases
using 10 LLMs. We provided these LLMs with case study requirements and a prompt that contained an uncertainty
questionnaire. The responses generated by the LLMs were then evaluated with input from the practitioners. Results
demonstrated that practitioners agreed with 63–88% of the responses generated by all LLMs. Furthermore, discussions
with practitioners highlighted the usefulness of LLMs in understanding robotic cases, generating logical responses, and
identifying novel uncertainties. Our evaluation suggests two promising research directions: creating an uncertainty
taxonomy for self-adaptive robotics and developing an LLM-based framework for automatically identifying and
managing uncertainty.

Acknowledgments

This work is funded by the RoboSAPIENS project under the EU Horizon Europe program (Grant No. 101133807).

References

[1] Peter G Larsen, Shaukat Ali, Roland Behrens, Ana Cavalcanti, Claudio Gomes, Guoyuan Li, Paul De Meulenaere,
Mikkel L Olsen, Nikolaos Passalis, Thomas Peyrucain, et al. Robotic safe adaptation in unprecedented situations:
the RoboSAPIENS project. Research Directions: Cyber-Physical Systems, 2:e4, 2024.

[2] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Computer, 36(1):41–50, 2003.

[3] Danny Weyns, Radu Calinescu, Raffaela Mirandola, Kenji Tei, Maribel Acosta, Nelly Bencomo, Amel Bennaceur,
Nicolas Boltz, Tomas Bures, Javier Camara, et al. Towards a research agenda for understanding and managing
uncertainty in self-adaptive systems. ACM SIGSOFT Software Engineering Notes, 48(4):20–36, 2023.

[4] Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan Wang. The
Dawn of LMMs: Preliminary Explorations with GPT-4V(ision), 2023.

[5] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M Zhang.
Large Language Models for Software Engineering: Survey and Open Problems. In 2023 IEEE/ACM International
Conference on Software Engineering: Future of Software Engineering (ICSE-FoSE), pages 31–53. IEEE, 2023.

7

212



D1.1 - RoboSAPIENS: RoboArch, RoboChart, and UQ (Public Document)

Hassan Sartaj et al.

[6] Ahmed E. Hassan, Gustavo A. Oliva, Dayi Lin, Boyuan Chen, Zhen Ming, and Jiang. Rethinking Software
Engineering in the Foundation Model Era: From Task-Driven AI Copilots to Goal-Driven AI Pair Programmers,
2024.

[7] Andres J Ramirez, Adam C Jensen, and Betty HC Cheng. A taxonomy of uncertainty for dynamically adaptive
systems. In 2012 7th International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pages 99–108. IEEE, 2012.

[8] Zhi Zheng, Qian Feng, Hang Li, Alois Knoll, and Jianxiang Feng. Evaluating uncertainty-based failure detection
for closed-loop llm planners. In ICRA 2024 Workshop on Back to the Future: Robot Learning Going Probabilistic,
2024.

[9] Sara M. Hezavehi, Danny Weyns, Paris Avgeriou, Radu Calinescu, Raffaela Mirandola, and Diego Perez-Palacin.
Uncertainty in self-adaptive systems: A research community perspective. ACM Trans. Auton. Adapt. Syst., 15(4),
2021.

[10] Harriet R. Cameron, Simon Castle-Green, Muhammad Chughtai, Liz Dowthwaite, Ayse Kucukyilmaz, Horia A.
Maior, Victor Ngo, Eike Schneiders, and Bernd C. Stahl. A taxonomy of domestic robot failure outcomes:
Understanding the impact of failure on trustworthiness of domestic robots. In Proceedings of the Second
International Symposium on Trustworthy Autonomous Systems, 2024.

[11] Ho Suk, Yerin Lee, Taewoo Kim, and Shiho Kim. Chapter ten - addressing uncertainty challenges for autonomous
driving in real-world environments*equally contributed. In Artificial Intelligence and Machine Learning for
Open-world Novelty, volume 134 of Advances in Computers, pages 317–361. Elsevier, 2024.

[12] Shivoh Chirayil Nandakumar, Daniel Mitchell, Mustafa Suphi Erden, David Flynn, and Theodore Lim. Anomaly
detection methods in autonomous robotic missions. Sensors, 24(4), 2024.

[13] Maximilian Busch, Florian Schnoes, Amr Elsharkawy, and Michael F Zaeh. Methodology for model-based
uncertainty quantification of the vibrational properties of machining robots. Robotics and Computer-Integrated
Manufacturing, 73, 2022.

[14] Ke Wang, Chongqiang Shen, Xingcan Li, and Jianbo Lu. Uncertainty quantification for safe and reliable
autonomous vehicles: A review of methods and applications. IEEE Transactions on Intelligent Transportation
Systems, 2025.

[15] Joakim Schack Betzer, Jalil Boudjadar, Mirgita Frasheri, and Prasad Talasila. Digital twin enabled runtime
verification for autonomous mobile robots under uncertainty. In International Symposium on Distributed Simulation
and Real Time Applications, 2024.

8

213



D1.1 - RoboSAPIENS: RoboArch, RoboChart, and UQ (Public Document)

E Assessing the Uncertainty and Robustness of the Lap-
top Refurbishing Software

The appended paper follows.

214



D1.1 - RoboSAPIENS: RoboArch, RoboChart, and UQ (Public Document)

Assessing the Uncertainty and Robustness of the
Laptop Refurbishing Software

Chengjie Lu
Simula Research Laboratory

and University of Oslo
Oslo, Norway

chengjielu@simula.no

Jiahui Wu
Simula Research Laboratory

and University of Oslo
Oslo, Norway

jiahui@simula.no

Shaukat Ali
Simula Research Laboratory

Oslo, Norway
shaukat@simula.no

Mikkel Labori Olsen
Danish Technological Institute

Odense, Denmark
miol@teknologisk.dk

Abstract—Refurbishing laptops extends their lives while con-
tributing to reducing electronic waste, which promotes building
a sustainable future. To this end, the Danish Technological
Institute (DTI) focuses on the research and development of several
robotic applications empowered with software, including laptop
refurbishing. Cleaning represents a major step in refurbishing and
involves identifying and removing stickers from laptop surfaces.
Software plays a crucial role in the cleaning process. For instance,
the software integrates various object detection models to identify
and remove stickers from laptops automatically. However, given
the diversity in types of stickers (e.g., shapes, colors, locations),
identification of the stickers is highly uncertain, thereby requiring
explicit quantification of uncertainty associated with the identified
stickers. Such uncertainty quantification can help reduce risks
in removing stickers, which, for example, could otherwise result
in software faults damaging laptop surfaces. For uncertainty
quantification, we adopted the Monte Carlo Dropout method to
evaluate six sticker detection models (SDMs) from DTI using three
datasets: the original image dataset from DTI and two datasets
generated with vision language models, i.e., DALL-E-3 and Stable
Diffusion-3. In addition, we presented novel robustness metrics
concerning detection accuracy and uncertainty to assess the
robustness of the SDMs based on adversarial datasets generated
from the three datasets using a dense adversary method. Our
evaluation results show that different SDMs perform differently
regarding different metrics. Based on the results, we provide SDM
selection guidelines and lessons learned from various perspectives.

Index Terms—Uncertainty Quantification, Robustness Evalua-
tion, Object Detection, Deep Neural Network

I. INTRODUCTION

The European Union’s Circular Economy Action Plan
(CEAP) highlights the need for sustainable operations to
promote circular economy processes and encourage sustain-
able consumption [1]. One essential activity is refurbishing
electronic devices, e.g., laptops, to extend their lives, reduce
electronic waste, and provide affordable options for consumers.
A critical and time-consuming step in refurbishment is re-
moving stickers from the laptop by first identifying stickers
and their locations. Manual cleaning is time-consuming and
faces challenges in finding enough skilled workers, and current
automation solutions are not built for this amount of variation,
limiting sustainability and scalability. Thus, novel solutions to
automate the processes are needed. Robotics offers a promising
solution to simplify and scale up this process, increasing
efficiency and reducing labor costs.

The Danish Technological Institute (DTI) develops, applies,
and transfers technology to industry and society. One leading
area that DTI focuses on is laptop refurbishing automatically
with robots, where software is a crucial part of all laptop
refurbishing steps. The software responsible for the cleaning
process in laptop refurbishment integrates deep neural networks
(DNN)–based sticker detection models (SDMs) built by DTI
for automatic sticker detection, which is the basis for successful
automatic sticker removal. The SDMs are built on open-source
object detection DNNs and trained using a sticker detection
dataset specially designed by DTI. Due to inappropriate model
architecture or insufficient training data, the design and training
process may introduce uncertainties into the SDMs, making
them vulnerable under certain conditions, such as adversarial
attacks, noisy data, or unforeseen input distributions [2]. This
vulnerability highlights the need to quantify uncertainty and
evaluate the robustness of the SDMs and software they are
integrated in, which is crucial for trustworthy sticker removal,
as incorrect detection may damage the laptop surface or
incomplete sticker removal.

As a first step towards holistic uncertainty quantification
(UQ) and handling in laptop refurbishing robotic software,
we conduct a comprehensive empirical evaluation to assess
the SDMs DTI uses regarding detection accuracy, prediction
uncertainty, and adversarial robustness. Specifically, we adopt
Monte Carlo Dropout (MC-Dropout) [3] as the UQ method to
capture the uncertainty in model predictions. We run the model
to perform multiple predictions, and based on these predictions,
we calculate two types of UQ metrics: label classification UQ
metrics and bounding box regression UQ metrics. We employ
Dense Adversary Generation (DAG) [4] as the adversarial
attack and define robustness score (RS) to measure the
robustness of the SDMs. RS measures robustness from two
perspectives: robustness concerning predictive precision and
robustness concerning prediction uncertainty. Regarding bench-
mark datasets, we construct benchmark datasets from three
data sources: datasets provided by our partner DTI, datasets
synthesized by prompting two vision language models (VLMs),
i.e., DALL-E-3 [5] and Stable Diffusion-3 [6], and datasets
created using the adversarial attack, i.e., DAG. Our evaluation
results show that different SDMs achieve different performance
regarding different evaluation metrics. Specifically, regarding
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datasets synthesized by prompting two VLMs, and datasets
created using an adversarial attack technique. For each image in
the benchmark datasets, the robot’s camera captures the image,
which is then processed by specialized robotic software for
sticker detection. Specifically, the SDM in the robotic software
makes T predictions based on the MC-Dropout method to
capture the prediction uncertainty. The T predictions are then
fed to the UQ component in the robotic software to calculate
UQ metrics. The UQ component first employs the density-
based algorithm, HDBSCAN, to cluster the detected stickers in
T predictions and then calculates the UQ metrics based on the
detected stickers. We consider two types of UQ metrics: label
classification UQ metrics and bounding box regression UQ
metrics. We present the MC-Dropout method in Section III-A
and the UQ metrics in Section III-B. Sections III-C and III-D
introduce VLM-based and adversarial attack-based dataset
creation.

Fig. 1: Overview of the Uncertainty Quantification Process for
Sticker Detection Models in the Robotic Software.

A. Monte Carlo Dropout-Based Uncertainty Quantification

Bayesian probabilistic theory [10] is a universal theoretical
framework for uncertainty reasoning, and as discussed in
Section II-B, MC-dropout is a Bayesian approximation for
quantifying uncertainty. Hence, we adopt MC-Dropout as the
UQ method and inject inference-time activated dropout layers
into the pre-trained SDMs. By doing so, we build uncertainty-
aware variants of the original models. Specifically, for a SDM f ,
we first build its variant as fp by applying dropout layers with
dropout rate p. Next, we let fp make T predictions for a given
image input X to obtain a sample of outputs O = {fp

t }Tt=1. The
outputs O represent a sample from the model’s predictive distri-
bution, and MC-Dropout quantifies the uncertainty of fp’s out-
puts by extracting information regarding the variability of the T
predictions. We set T to 20 according to existing guidelines [3].

B. Uncertainty Quantification Metrics

1) Basic Concepts: As discussed in Section III-A, we utilize
MC-Dropout to quantify the uncertainty over T prediction
outputs given an input image X: O = {fp

t }Tt=1. A prediction
fp
t is a vector containing N different detected objects, and

a detected object fp
t (i), (1 ≤ i ≤ N) is characterized by

its label classification and bounding box regression. The

label classification assigns the softmax score smfp
t (i)

for
the candidate objects of three classes: stickers, logos, and
backgrounds. The softmax score is a vector of probabilities, and
we take the position with the maximum probability value as the
predicted label, i.e., argmax(). The bounding box regression
returns four different real values boxfp

t (i)
= {x1, x2, y1, y2}

to locate the detected object. Specifically, a bounding box is a
rectangle whose start and end points are denoted as (x1, y1)
and (x2, y2). In a deterministic model without uncertainty,
all predictions should be the same, for example, a detected
object fp

t (i) in prediction fp
t should also be detected in other

predictions and have the same softmax score and bounding
box regression values as those in other predictions. However,
recall that MC-Dropout quantifies the uncertainty by utilizing
T model predictions with randomly dropped units. Therefore,
each prediction is not necessarily the same. The model based on
MC-Dropout can produce predictions with different locations
for each object in a single image. To this end, a clustering
method is needed to cluster objects in the T predictions. Details
will be introduced in the following section.

2) HDBSCAN-based Object Clustering: We adopt the hier-
archical density-based clustering algorithm, HDBSCAN [11],
to cluster objects based on their predicted bounding boxes. The
algorithm identifies clusters by calculating core distances for
each point and adjusting these distances based on local density.
It then builds a minimum spanning tree to form a hierarchy of
clusters, which is condensed to highlight meaningful clusters.
This hierarchical structure enables the recognition of clusters
of various shapes and sizes. Two key parameters need to
be adjusted: minimum samples (minSamples), which sets
the minimum number of samples in the neighborhood for a
point to be considered a core point, and minimum cluster
size (minPts), which determines the minimum number of
points to be considered as a cluster. Based on our preliminary
study, we set both minSamples and minPts to 3. As a result,
each cluster represents a detected object in the T predictions
whose label classification softmax score and the bounding box
regression are denoted as {smk}Wk=1 and {boxk}Wk=1. Note that
W is the number of times the object is detected, and it is in
the range [1, T ], as some objects are not always detected in all
T predictions. We then calculate UQ metrics for each detected
object in the T predictions.

3) Uncertainty Metrics for Label Classification: We employ
three common metrics to measure uncertainty in classification
tasks [12], including Variation Ratio (VR) [13], Shannon
Entropy (SE) [14], and Mutual Information (MI) [14]. VR
is a measure of dispersion. It is calculated by determining the
proportion of cases that are not in the mode (the most frequent
category) relative to the total number of cases. For the detected
object in each cluster, we first extract a set of labels as the
classes with the highest softmax scores:

y = {argmax(smk)}Wk=1, (2)

we then find the mode of the distribution as:

c∗ = argmax
c=1,...,C

∑
k

1[yk = c], (3)
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where 1 is the indicator function. The number of times c∗ was
sampled is

∑
k 1[y

k = c∗]. Finally, VR is calculated as:

VR = 1−
∑

k 1[y
k = c∗]

W
. (4)

VR ranges from 0 to 2/3. It attains the maximum value of 2/3
when all three classes are sampled equally and the minimum
value of 0 when only a single class is sampled.

SE captures the average amount of information contained in
the predictive distribution. For a detected object, we calculate
SE by considering softmax scores over T predictions, i.e.,
{smk}Wk=1 as:

SE = −
nc∑
c=1

(
1

W

W∑
k=1

smk(c))× log(
1

W

W∑
k=1

smk(c)), (5)

where nc denotes the number of classes, i.e., 3. SE values
range from 0 to log(3), reaching a maximum of log(3) when
all classes are predicted to have the same softmax score, i.e.,
1/3, indicating the most uncertain case. Its minimum value is 0
when the probability of one class is 1 and all other probabilities
are 0, indicating no uncertainty in the classification.

MI quantifies the information difference between the pre-
dicted and posterior of the model parameters, providing a
different uncertainty measure for classification tasks. For the
detected object in each cluster, MI can be computed as [12]:

MI = −
nc∑
c=1

(
1

W

W∑
k=1

smk(c))× log(
1

W

W∑
k=1

smk(c))

+
1

W

W∑
k=1

nc∑
c=1

smk(c)× log smk(c),

(6)

where nc denotes the number of classes, i.e., 3. MI measures
the model’s confidence in its outputs. It ranges from 0 to 1,
and the larger the MI value, the higher the uncertainty.

4) Uncertainty Metrics for Bounding Box Regression: For
each detected object, we estimate the uncertainty for bounding
box regression using Total Variance (TV) [15] and Predictive
Surface (PS) [16]. TV captures the uncertainty in the bounding
box regression by calculating the trace of the covariance matrix
of {boxk}Wk=1, which sums the variances of each variable in the
bounding box. Specifically, a bounding box has four variables
used to locate an object: box = {x1, x2, y1, y2}, for variable
v ∈ box, we calculate its variance as:

δ2v =
1

W − 1

W∑
k=1

(vk − µv)
2, (7)

where δ2 is the variance of v, µ is the mean value of v, and W
is the number of times the object is detected. We then calculate
TV by summing the variances for all variables:

TV =
∑

v∈box

δ2v . (8)

TV ranges in [0,+∞), and larger TV means higher uncertainty.
PS was originally proposed to quantify prediction uncertainty

in object detection models for autonomous driving [16]. It
measures uncertainty by considering the convex hull of each

Fig. 2: An example for sticker detection. The left column shows
the laptop image with two stickers on it. The right column
shows the sticker detection outputs and what the convex hull
looks like in the left image.

corner point of the predicted bounding box. A convex hull is
the smallest convex shape enclosing all points and PS estimates
uncertainty by calculating the area covered by the convex hull.
To be concrete, four corner points define the bounding box to
locate an object: (x1, y1), (x2, y2), (x2, y1), and (x1, y2). For
the object in each cluster where the bounding box is detected
W times, i.e., {boxk}Wk=1, we first obtain the cluster of each
corner point as:

CP = {(x1, y1)k, (x2, y2)k, (x2, y1)k, (x1, y2)k}Wk=1, (9)

we then identify the convex hulls for its four corner points,
respectively, as:

convexh = ConvexHull(cp), cp ∈ CP. (10)

Finally, we calculate PS by averaging the area covered by the
convex hulls of the four corner points to approximate prediction
uncertainty:

PS =
1

|CP |
∑

cp∈CP

Area(convexhcp). (11)

PS ranges in [0,+∞), and a higher PS value indicates higher
variability of the predicted corner points, meaning higher
uncertainty in the bounding box prediction.

Recall that for an input image X , multiple objects will
be detected, so after performing the HDBSCAN clustering
algorithm, multiple clusters will be obtained, each cluster
representing a detected object. To get the uncertainty of the
input image X , for each UQ metric, we take the average
of all metric values of all detected objects in X . Figure 2
shows an example of using the SDM to detect stickers on a
laptop and how to calculate UQ metrics based on the model
outputs. The SDM makes T predictions, and each prediction
returns a label based on the softmax score and a bounding box
containing four corner points. The convex hull of each corner
point is then calculated. The UQ metrics for label classification
are calculated based on the softmax scores in T predictions.
Regarding UQ metrics for bounding box regression, TV is
calculated based on the variance of each corner point, and PS
is calculated based on the area covered by convex hulls.
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C. VLM-based Image Generation

VLMs are generic pre-trained multimodal models that learn
from large-scale image-text pairs sourced from the Internet,
enabling them to directly address downstream visual tasks
without task-specific fine-tuning [17]. Therefore, we apply the
zero-shot generalization ability of VLMs to generate a synthetic
image dataset to study whether SDMs can identify stickers
on laptops that they have not encountered before. Following
the representative categories of VLMs, i.e., autoregressive and
diffusion models [18], we select two state-of-the-art VLMs:
DALL-E-3 [5] and Stable Diffusion-3 [6]. DALL-E-3 is the latest
VLM developed by OpenAI, leveraging advanced transformer
architectures to generate images from textual descriptions.
Stable Diffusion-3, developed by StablilityAI, is a text-to-image
generation VLM that uses diffusion processes to create images
from textual descriptions.

To ensure consistency and equity in using VLMs, we design
the same prompt template to prompt the selected VLMs. Table I
lists the main prompt phrases and relevant examples, which
involve common laptop models, the number, size, style, and
location of generated stickers, and other detailed image content
information. The prompt template consists of these phrases,
e.g., “a laptop, three stickers on the lid, one small music sticker,
one small animal sticker, one small superhero sticker, stickers
close to each other, top-down view, screen turn off, on a flat
surface, a solid dark background”. Note that to enhance the
generality of the synthesized dataset, the prompt template omits
information about the quality of the generated images, e.g.,
sharp focus or highly detailed, thereby generating images with
varying levels of clarity that can be used to test and evaluate
the generalization capability of SDMs.

D. Adversarial Image Generation

DNNs are vulnerable to adversarial attacks, which are
imperceptible to humans, but easily misclassified by DNNs [19].
To study the robustness of SDMs against adversarial attacks and
how these attacks affect the prediction uncertainty of SDMs, we
construct an adversarial image dataset by perturbing images in
an original dataset. Specifically, given an image X containing
N targets T = {t1, t2, ..., tN}, each target is labeled by a
ground-truth ln ∈ {sticker, logo, background}, an adversarial
attacker aims to inject perturbations on X to obtain a perturbed
image X ′ that satisfies:

∀1 ≤ n ≤ N ∧ tn ∈ T : f(X ′, tn) = l′n ̸= f(X, tn) = ln,
(12)

where f denotes the SDM. As a result, the generated adversarial
image X ′ makes all targets incorrectly predicted. We adopt an
adversarial attack approach called Dense Adversary Generation
(DAG) [4] to construct the adversarial image dataset. DAG aims
to generate adversarial examples for semantic segmentation and
object detection tasks where multiple objects must be recog-
nized. It requires an original dataset to perturb the images in it.
We use the dataset to evaluate the pre-trained SDM as the origi-
nal dataset and then add adversarial perturbations to the images
in the original dataset to obtain an adversarial image dataset.

TABLE I: Prompt Phrase with Example
Phrase Example

laptop model “a laptop”, “a MacBook laptop”, “a Dell laptop”, “an HP laptop”, ...
sticker number “one”, “two”, “three”, ...
sticker size “small”, “medium”, “big”
sticker style “Apple logo”, “Dell logo”, ..., “cartoon character”, “animal”, ...
sticker location “close to the center of the laptop”, “stickers close to each other”, ...
other “top-down view”, “screen turn off”, “a solid dark background”, ...

IV. EXPERIMENT DESIGN

A. Sticker Detection Models

We obtain six pre-trained SDMs employed in the robotic
software, representing state-of-the-art DNN-based object de-
tection models. These models are designed by considering
multiple model architectures which are Faster R-CNN [20],
Faster R-CNN v2 [21], RetinaNet [22], RetinaNet v2 [23],
SSD300 [24], and SSDLite [25]. DTI trained these models
using a specially designed sticker detection dataset containing
thousands of labeled laptop images with stickers in various
poses, sizes, and lighting conditions. All six SDMs are trained
based on the open-source implementation in PyTorch [26].

We modify the six pre-trained models to be compatible
with the MC-Dropout method by injecting prediction-time
activated dropout layers. Specifically, for Faster R-CNN, Faster
R-CNN v2, RetinaNet, and RetinaNet v2, we add dropout
layers to the convolutional layers of the Feature Pyramid
Network, which is a common component of these four models
and built on the backbones of these four models. Regarding
SSD300 and SSDLite, we add dropout layers to their detection
heads. In our experiments, we choose 9 dropout ratios from 0.1
to 0.5 with an interval of 0.05 to study the effect of dropout
rates on the performance of SDMs.

B. Benchmark Datasets

We obtain a dataset containing 150 images from DTI, i.e.,
origImg, and synthesize two datasets by prompting two VLMs,
DALL-E-3 and Stable Diffusion-3, i.e., dalleImg and stableImg,
each containing 150 images. By applying the adversarial
attack method (DAG) to origImg, dalleImg, and stableImg, we
generate three adversarial datasets: advOrigImg, advDalleImg,
and advStableImg. Specifically, for each image X in each
dataset, we execute DAG 10 times and obtain 10 adversarial
images for X , and therefore, each adversarial dataset contains
1500 images. These three adversarial datasets are used to assess
the robustness of the SDMs.

C. Evaluation Metrics

Mean Average Precision (mAP) is a metric for evaluating
the accuracy of object detectors [27] and is calculated as:

mAP =
1

nc

nc∑
c=1

APc, (13)

where APc is the average precision for class c and nc is the
number of classes. AP is the area under the precision-recall
curve p(r) that is calculated as

∫ 1

0
p(r)dr. For object detection

tasks, precision measures how accurate the predictions are and
is calculated as the number of true positives divided by the
number of all detected objects, while recall measures how good
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TABLE II: Datasets, metrics, and statistical tests for each RQ
RQ Dataset Metric Statistical Test

1 origImg, dalleImg, stableImg mAP
Friedman test,
Wilcoxon Signed-Rank test,
rank-biserial correlation,
Holm–Bonferroni method

2 origImg, dalleImg, stableImg VR, SE, MI,
TV , PS

3 origImg, advOrigImg, dalleImg,
advDalleImg, stableImg, advStableImg RSmAP , RSuq

4 origImg, dalleImg, stableImg mAP, VR, SE,
MI, TV , PS

Spearman’s rank correlation,
Holm–Bonferroni method

the model is at recalling classes and is defined as the number of
true positives divided by the number of all ground-truth objects.
True positives are determined based on Intersection over Union
(IoU), which quantifies how close the predicted and ground-
truth bounding boxes are by taking the ratio between the area
of intersection and the area of the union of the predicted and
ground-truth boxes: IoU = (AP ∩AG)/(AP ∪AG), where AP

and AG are the area of the predicted and ground-truth boxes,
respectively. Then, if the IoU of the predicted and true boxes
is greater than a threshold and the object is correctly classified,
they are considered a match and therefore a true positive. We set
the threshold to 0.5, commonly used for object detection [16].
UQ Metrics (UQMs) are the UQ metrics defined in Sec-
tion III-B, which includes VR, SE, MI, TV , and PS.
Robustness Score (RS) measures the robustness of each SDM
in performing the sticker detection task. We calculate RS
regarding mAP and UQM, respectively, i.e., RSmAP and RSuq

by considering the model’s performance on dataset D and D’s
adversarial version Dadv . Specifically, for image X ∈ D, there
are 10 adversarial images {X1

adv, X
2
adv, ..., X

10
adv} from Dadv ,

and we consider RS regarding metric M to be high when
the model performs well in terms of M (i.e., high mAP or
low UQM) and the difference in M between X and X’s 10
adversarial examples is small. We then calculate RSmAP as:

RSmAP = AvgmAP −DiffmAP , (14)

where AvgmAP is the mean value of mAP calculated by averag-
ing the value achieved on X and X’s 10 adversarial examples:
(mAPX +

∑10
i=1 mAPXi

adv
)/11; DiffmAP measures how

differently the model performs on X and X’s 10 adversarial
examples in terms of mAP:

∑10
i=1 |mAPX − mAPXi

adv
|/10.

For RSuq, we first calculate RS for each uncertainty metric
M: RSM = 1− (AvgM +DiffM), (15)

where M ∈ {VR, SE,MI,TV,PS}. AvgM and DiffM are
calculated using the same equations as AvgmAP and DiffmAP .
We then calculate RSuq by taking the mean value of RS for
each uncertainty metric:

RSuq =

∑
M∈UQMs RSM

count(UQMs)
. (16)

RSuq combines the RS of the five UQMs to show the overall
robustness of the SDMs in terms of uncertainty.

D. Research Questions

We answer the following four research questions (RQs): RQ1:
How does each SDM perform when detecting stickers regarding
detection accuracy? RQ2: How does each SDM perform when
detecting stickers regarding prediction uncertainty? RQ3: How

robust is each SDM in detecting stickers? RQ4: How does the
detection accuracy correlate with the prediction uncertainty?
Table II describes the employed datasets, metrics, and statistical
tests for answering RQs.

E. Statistical Test

Since we compare more than two paired groups, i.e., SDMs
using the same image dataset, we conduct the statistical
analysis using the Friedman test [28], the Wilcoxon Signed-
Rank test [29], and rank-biserial correlation [30]. Following
the guideline [31], [32], we employ the Friedman test to
verify if there are overall significant differences among all the
paired groups (i.e., the models). If at least one group differs
significantly from the others, p < 0.05 will be computed by this
statistical test. If this is the case, we apply the Wilcoxon Signed-
Rank test for pairwise comparisons (i.e., comparing two models)
with a significance level of 5%. To interpret the Wilcoxon
Signed-Rank test more precisely, we calculate the median
and the standard deviation by the median absolute deviation
(MAD) of our data, i.e., [median ± 2 MAD] [33], [34]. It
checks if the underlying distribution is stochastically equal to,
less than, or greater than a distribution symmetric about zero,
and accordingly defines the relevant alternative hypothesis for
more effective execution of the Wilcoxon Signed-Rank test.
Moreover, for pairwise groups with significant differences,
we use the rank-biserial correlation as the effect size of the
Wilcoxon Signed-Rank test to determine which group shows
better results. The rank-biserial correlation ranges from -1 to
1, where a positive result indicates that the first group tends
to be larger than the second, and a negative result means the
opposite, whereas 0 explains there is no significant difference
between the two paired groups.

To study the correlation between mAP and UQMs for RQ4,
we use Spearman’s rank correlation coefficient [35], which
provides the correlation coefficient (ρ) and the significance
level (p). A p less than 0.05 indicates a significant correlation
between mAP and UQMs, whereas ρ ranges from -1 to 1,
revealing the direction and strength of the correlation. A
positive ρ indicates a positive correlation, meaning that one
variable increases as the other increases, and vice versa. A
ρ of 0 shows no correlation. Considering that the Wilcoxon
Signed-Rank test and Spearman’s rank correlation coefficient
are utilized multiple times to compare multiple paired groups,
we address the issue of aggregated error probabilities resulting
from multiple comparisons by applying the Holm–Bonferroni
method [36]. This multiple comparison correction technique
adjusts the significance level from the overall and controls the
family-wise error rate at an α level, e.g., 5%.

V. RESULTS AND ANALYSES

We present descriptive statistics and summarize the key
results of the statistical tests in Sections V-A to V-D, and then
provide guidelines for selecting SDMs in Section V-E. The
complete results are available in our replication package [37].
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Fig. 3: Average mAP achieved by SDMs for origImg, dalleImg,
and stableImg at different dropout rates. M1: Faster R-CNN,
M2: Faster R-CNN v2, M3: RetinaNet, M4: RetinaNet v2, M5:
SSD300, and M6: SSDLite – RQ1.

A. Results for RQ1 – Mean Average Precision

Figure 3 shows the mAP results achieved by each SDM for
each dataset at different dropout rates with 95% confidence
intervals. For the origImg dataset, Faster R-CNN, Faster R-
CNN v2, RetinaNet, and RetinaNet v2 all achieved mAP values
close to 1 across all dropout rates, which indicates these four
SDMs achieve high precision and accuracy in detecting stickers
correctly, and their performance is stable as the dropout rate
increases. Lower mAP values are observed for SSD300 and
SSDLite, with SSDLite consistently performing the worst. More-
over, the mAP values for both SDMs (SSD300 and SSDLite)
decrease as the dropout rate increases, indicating that they
are more susceptible to the dropout rate. For dalleImg dataset,
Faster R-CNN v2 achieved the consistent best performance at
all dropout rates. Faster R-CNN, RetinaNet, and RetinaNet v2
performed comparably, which slightly outperformed SSD300.
SSDLite performed consistently the worst. For stableImg
dataset, we can observe that at all dropout rates, Faster R-
CNN v2 performed the best followed by SSD300 and Faster
R-CNN. SSDLite outperformed RetinaNet and RetinaNet v2
at dropout rates below 0.2, after which the performance of
SSDLite started to decrease significantly and underperformed
RetinaNet and RetinaNet v2, while RetinaNet and RetinaNet v2
performed consistently across all dropout rates. Besides, when
comparing the mAP achieved by SDMs on LLM-synthetic
datasets (dalleImg and stableImg) and origImg, we observe that
Faster R-CNN, Faster R-CNN v2, RetinaNet, and RetinaNet v2
perform poorer on the LLM-synthetic datasets than on origImg
dataset, while SSD300 and SSDLite exhibit better performance
on the LLM-synthetic datasets than on origImg dataset.

We rank the best SDM that significantly outperformed
the other SDMs on each metric according to the pairwise
comparison results. For SDMs having no significant differences,
we consider them to be a tie. Table III shows the results of
best SDM(s) for each metric, where the last row shows the
SDM recommendations based on different metrics. The best
SDM for mAP is shown in the second column of Table III. We
can observe that for origImg dataset, Faster R-CNN, Faster R-
CNN v2, and RetinaNet v2 all performed the best in terms of
mAP, significantly outperforming the other SDMs (RetinaNet,
SSD300, and SSDLite) across all the dropout rates. As for
dalleImg and stableImg datasets, Faster R-CNN v2 significantly

TABLE III: Best SDM(s) across different metrics and datasets
for all dropout rates based on pairwise comparison results. M1:
Faster R-CNN, M2: Faster R-CNN v2, M3: RetinaNet, M4:
RetinaNet v2, M5: SSD300, and M6: SSDLite. Mi-j means
that Mi, Mi + 1, ..., Mj all performed the best and had no
significant differences – RQ1, RQ2, and RQ3.

Dataset RQ1 RQ2 RQ3

mAP VR SE MI TV PS RSmAP RSuq

origImg M1,2,4 M1,2,5,6 M1,4 M4 M4 M4 M1,4 M4
dalleImg M2 M1-6 M4 M4 M4 M4 M2 M4
stableImg M2 M1-6 M4 M4 M4 M4 M2 M4

Recmetric M2 M1,2,5,6 M4 M4 M4 M4 M2 M4

outperforms the other five SDMs. When looking at the best
SDM across all datasets, Faster R-CNN v2 is recommended
for all three datasets.

Conclusion for RQ1: Different SDMs perform differently
in terms of mAP on different datasets. Specifically, Faster
R-CNN, Faster R-CNN v2, and RetinaNet v2 all perform the
best for origImg dataset, while Faster R-CNN v2 achieves
the best performance for dalleImg and stableImg datasets.
Regarding the best SDM across all datasets, Faster R-CNN v2
achieves the overall best performance regarding mAP and is
recommended.

B. Results for RQ2 – Uncertainty

Figure 4 presents the mean results of UQMs for each dataset
at different dropout rates with 95% confidence intervals.

Uncertainty for Label Classification. We have the following
observations regarding three label classification UQMs (i.e.,
VR, SE, and MI). For VR, Faster R-CNN, Faster R-CNN v2,
RetinaNet, RetinaNet v2, SSD300, and SSDLite all achieve
a very low VR, i.e., less than 0.015 for all three datasets at
all dropout rates. The results suggest that all SDMs exhibit
negligible uncertainty in label classification dispersion in the
three datasets, that is, when an object is detected multiple
times, the SDMs are confident that they will give the same
classification result. However, for origImg dataset, we observe
slightly higher VR values, which increase as the dropout
rate increases for both RetinaNet and RetinaNet v2, showing
higher uncertainty and less stability of these two SDMs in
terms of VR as dropout rate increases. As for SE and MI,
SSDLite consistently achieves the highest uncertainty values
of both UQMs for all datasets at all dropout rates, followed
by SSD300, which exhibits high uncertainty values regarding
these two UQMs for origImg and dalleImg datasets. However,
exceptions can be observed for stableImg dataset, where
SSD300 shows lower SE and MI values than Faster R-CNN
and Faster R-CNN v2 at low dropout rates and starts to
show higher uncertainty as the dropout rate increases. Besides,
Faster R-CNN, Faster R-CNN v2, RetinaNet, and RetinaNet v2
achieve comparable performance in terms of SE and MI for
origImg dataset at all dropout rates, while when it comes to
dalleImg and stableImg datasets, RetinaNet and RetinaNet v2
consistently achieve the lowest SE and MI values. Recall that
SE quantifies the amount of information in the predictions,
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Fig. 4: Average UQMs achieved by SDMs for origImg,
dalleImg, and stableImg at different dropout rates. M1: Faster
R-CNN, M2: Faster R-CNN v2, M3: RetinaNet, M4: Reti-
naNet v2, M5: SSD300, and M6: SSDLite – RQ2.

while MI measures the difference in information between
the prediction and the posterior. The results for SE and MI
show that the prediction of SSD300 and SSDLite contain
more information and differ more from the posterior, thus
exhibiting higher uncertainty in label classification as compared
to the other four SDMs, i.e., Faster R-CNN, Faster R-CNN v2,
RetinaNet, and RetinaNet v2.

Uncertainty for Bounding Box Regression. Similar observa-
tions can be made for the bounding box regression UQMs, that
is, SSD300 and SSDLite show higher TV and PS values for all
datasets at all dropout rates except for TV on dalleImg dataset,
where SSD300 achieves lower TV than Faster R-CNN until
the dropout rate reaches 0.45. Besides, Faster R-CNN, Faster
R-CNN v2, RetinaNet, and RetinaNet v2 achieve comparable
and consistent low TV and PS, except for TV of Faster R-
CNN on dalleImg dataset. The results of TV and PS show that
SSD300 and SSDLite exhibit higher uncertainty in predicting
bounding boxes than the other four SDMs. Moreover, when
the dropout rate increases, the uncertainties in SSD300 and
SSDLite also increase, while for the other SDMs, the dropout
rate has little effect on their uncertainties.

Table III shows the best SDM(s), where we can find that

Fig. 5: Average RSmAP and RSuq achieved by SDMs for
origImg, dalleImg, and stableImg at different dropout rates.
M1: Faster R-CNN, M2: Faster R-CNN v2, M3: RetinaNet,
M4: RetinaNet v2, M5: SSD300, and M6: SSDLite – RQ3.

regarding VR, Faster R-CNN, Faster R-CNN v2, SSD300, and
SSDLite achieve the best performance on origImg dataset, while
all SDMs perform comparable on dalleImg and stableImg
datasets. For SE, MI, TV , and PS, RetinaNet v2 perform
the best, i.e., shows the lowest uncertainty, except for SE
on origImg dataset, where Faster R-CNN and RetinaNet v2
achieve comparable best performance. When looking at the
SDM recommendations across all datasets, regarding VR,
Faster R-CNN, Faster R-CNN v2, SSD300, and SSDLite are
recommended, while for SE, MI, TV , and PS, RetinaNet v2 is
recommended as the best SDM.

Conclusion for RQ2: Different SDMs show different levels
of uncertainties for different UQMs. Regarding VR, Faster
R-CNN, Faster R-CNN v2, SSD300, and SSDLite are rec-
ommended as the best SDMs since they have the lowest
uncertainties across all datasets, while for SE, MI, TV , and
PS, RetinaNet v2 achieves the lowest uncertainties and is
recommended as the best SDM.

C. Results for RQ3 – Robustness

Figure 5 shows the mean RSmAP and RSuq results with
95% confidence intervals. Regarding RSmAP , we observe that
Faster R-CNN v2 performs the best for dalleImg and stableImg
datasets at all dropout rates, while for origImg dataset, Faster
R-CNN, Faster R-CNN v2, RetinaNet, and RetinaNet v2 all
perform the best with a RSmAP close to 1. SSDLite consistently
performs the worst for origImg and dalleImg datasets at all
dropout rates, and performs worst on stableImg when the
dropout rate is above 0.2. Besides, the increase in dropout
rate has different effects on different SDMs, for example,
the dropout rate increase leads to a decrease of RSmAP for
SSDLite, while does not have much impact on Faster R-CNN,
Faster R-CNN v2, RetinaNet, and RetinaNet v2. Regarding
RSuq, we observe that the results are consistent for all three
datasets at all dropout rates, that is, RetinaNet v2 achieves
the best RSuq, while SSDLite performs the worst. We also
see a decrease in RSuq as the dropout rate increases. We also
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TABLE IV: Results of the Spearman’s rank correlation coeffi-
cient between mAP and UQMs for each SDM on all dropout
rates and datasets. A value or N/A denotes that the correlation
is not statistically significant or non-existent, otherwise, it is
significant, i.e., p < 0.05 – RQ4.

SDM VR SE MI TV PS

Faster R-CNN N/A -0.312 -0.277 -0.476 -0.461
Faster R-CNN v2 N/A -0.408 -0.357 -0.365 -0.334
RetinaNet 0.012 -0.161 -0.107 -0.328 -0.329
RetinaNet v2 0.098 -0.209 -0.065 -0.316 -0.295
SSD300 N/A -0.530 -0.455 -0.016 0.047
SSDLite N/A -0.510 -0.070 -0.269 -0.174

show the best SDM(s) in Table III. For RSmAP , Faster R-
CNN and RetinaNet v2 perform the best on origImg dataset,
while Faster R-CNN v2 perform the best on dalleImg and
stableImg datasets. When looking at the best SDM across all
datasets, Faster R-CNN v2 is recommended. Regarding RSuq ,
RetinaNet v2 performs consistently the best across all three
datasets and is therefore recommended.

Conclusion for RQ3: The six SDMs perform differently for
different datasets in terms of RSmAP and RSuq . Specifically,
regarding RSmAP , Faster R-CNN and RetinaNet achieve
the best performance on origImg dataset, and Faster R-
CNN v2 perform the best on dalleImg and stableImg datasets.
Regarding RSuq , RetinaNet v2 performs consistently the best
across all three datasets.

D. Results for RQ4 – Correlation

Table IV shows the results of Spearman’s rank correlation
test for the correlation between mAP and the five UQMs for
different SDMs. As for the correlation between mAP and VR,
for all SDMs the difference is either insignificant or non-
existent, while in terms of the correlation between mAP and the
other four UQMs (SE, MI, TV , and PS), negative correlations
can be observed for all SDMs, except for SSD300, which
achieves insignificant correlation between mAP and TV/PS.
This observation suggests that as uncertainty increases (except
for VR), detection precision and accuracy will decrease. In
addition, we also observe that as the dropout rate increases, the
correlation between mAP and SE, MI, TV , and PS increases.
This is reasonable since higher dropout rates will introduce
higher uncertainties in the predictions.

Conclusion for RQ4: We observe significant negative
correlations between mAP and SE, MI, TV , and PS for all
SDMs, except for TV and PS achieved by SSD300, while
insignificant or non-existent correlations are observed for the
correlation between mAP and VR. Besides, the correlation
between mAP and SE, MI, TV , and PS increases as the
dropout rate increases.

E. Concluding Remarks and Guidelines

We analyze the performance of each SDM regarding detec-
tion accuracy (mAP), prediction uncertainty (UQM), and ad-
versarial robustness (RSmAP and RSuq). Based on the results,

Fig. 6: Guidelines for Selecting Sticker Detection Models.

we observe that different SDMs perform differently regarding
different metrics. In practice, considering different purposes and
applications, selecting the appropriate SDM based on specific
performance requirements is crucial. Therefore, we provide
guidelines for selecting SDMs from various perspectives in
Figure 6. Regarding detection accuracy, i.e., mAP, Faster
R-CNN v2 is recommended as it achieves the overall best
performance. As for UQMs, for both label classification and
bounding box regression tasks, we recommend RetinaNet v2
as it shows lower uncertainty in terms of both types of
uncertainty metrics. For the robustness of SDMs, Faster
R-CNN v2 shows the overall highest robustness regarding
detection accuracy, i.e., RSmAP , and is recommended as the
best SDM. When considering robustness regarding uncertainty,
RetinaNet v2 is recommended as the best SDM. Based on the
guidelines, adaptive software integrated within the robot to
select SDMs would significantly enhance the robot’s decision-
making capabilities, particularly in dynamic and uncertain
environments. Such software can automatically select the most
appropriate SDMs by considering various metrics.

VI. THREATS TO VALIDITY

Conclusion Validity concerns the reliability of the conclu-
sions. We employed appropriate statistical tests to draw reliable
conclusions and followed a rigorous statistical procedure to
analyze the collected data. Internal Validity is related to the
parameter settings. To determine the hyperparameters for
the clustering algorithm, i.e., HDBSCAN, we ran different
combinations of hyperparameter values on a small subset
of the original dataset and selected the combination that
correctly clustered all objects. Besides, the threshold value for
IoU is set to 0.5, following Catak et al. [16]. Constructive
Validity concerns the metrics used for the evaluation and
we employed comparable metrics to ensure fair comparisons.
Specifically, we used mAP to measure the sticker detection
performance and five UQMs commonly used in classification
and regression to measure model uncertainty. We also calculated
RS to measure the robustness of the models under adversarial
attacks. External Validility is about the generalizability of the
empirical evaluation. We employ six models and six datasets.
These models are based on different architectural designs and
represent state-of-the-art object detection models. Regarding
the benchmark datasets, in addition to the original dataset, we
synthesize two datasets by prompting two VLMs, i.e., DALL-
E-3 and Stable Diffusion-3. Besides, we generate adversarial
datasets by perturbing the original and synthetic datasets.
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VII. LESSONS LEARNED AND INDUSTRIAL PERSPECTIVES

Understanding, Utilizing, and Handling Uncertainty in
Refurbishing Laptop software. UQ plays a pivotal role in
enhancing the refurbishment of laptops by guiding laptop image
data collection, ensuring dataset diversity, and determining
the need for manual intervention. Collecting laptop images
is time-consuming and significantly impacts solution quality,
and UQ can guide decisions on whether additional data
is needed. Specifically, UQ helps identify areas with high
prediction uncertainty, indicating the need for more diverse
and comprehensive training data. Besides, UQ is essential in
addressing the limitations of existing datasets created by DTI,
which primarily features Lenovo laptops and common sticker
placements, e.g., stickers on the back cover. Also, images in
the DTI dataset were captured in a relatively sterile setup
with high quality that may not reflect real-world conditions.
Thus, SDMs need to be tested under different conditions in
handling unexpected situations, such as stickers near a mouse
pad, where processor branding stickers are often found. By
highlighting gaps in data diversity, UQ directs efforts towards
collecting images from various laptop brands and unexpected
sticker locations, ensuring SDMs are robust and adaptable
to real-world conditions. Finally, UQ informs the need for
manual intervention in the refurbishment process, enabling
efficient and reliable operations by indicating when human
oversight is required. In addition to the uncertainty in SDMs, the
overall process of laptop refurbishing experiences uncertainties
from various aspects, such as humans working in collaboration
with robots, hardware errors, and other environmental factors.
Hence, a holistic UQ method is required for the entire laptop
refurbishing process that quantifies uncertainties from various
aspects and eventually provides an overall uncertainty. Such
quantified uncertainty plays a key role in identifying factors
contributing to uncertainties, followed by devising best practices
to reduce the overall uncertainty.

Realism of VLM-Generated Images. To assess the SDMs, we
generated images of laptops with stickers using two commonly
used pre-trained VLMs. However, this poses an open question
of whether the images generated are realistic. In our context,
all the generated images were manually checked for realism.
However, such an approach is not scalable, especially when
generating a large-scale dataset. To this end, we foresee the
need for an automated method to generate realistic images
of laptops with stickers. Pre-trained VLMs already possess a
strong understanding of general image features, and domain-
specific fine-tuning can further refine their output. Thus, one
possible solution is to fine-tune VLMs to adapt to specific
domains related to laptops and stickers, thereby helping
produce more realistic images from the outset and reducing
the need for extensive post-production filtering. Besides, large
language models can be another way of realism evaluation [38].
Furthermore, training a realism classifier to distinguish realistic
from unrealistic images can automate the manual check process.
In the future, we plan to investigate scalable and efficient
methods to generate large-scale realistic laptop image datasets.

VIII. RELATED WORKS

UQ in DNNs. UQ helps enhance model reliability and
trustworthiness. Various UQ methods have been studied to
measure confidence in the model predictions. BNN provides
a probabilistic framework for DNNs through Bayesian infer-
ence [7]. It is systematic but computationally expensive and has
a complex implementation. As a Bayesian approximation, MC-
Dropout is a practical and widely used UQ method [3], which
reduces the computational cost. Deep Ensembles (DE) [39]
involves independently training multiple DNNs with different
initialization, and the variance in the predictions of the multiple
DNNs serves as an uncertainty measure. DE is robust and
reliable in uncertainty estimation but computationally and
memory-wise expensive, requiring training and storing multiple
models. UQ methods have been applied in many domains, e.g.,
cyber-physical systems [40], [41], computer vision tasks [15],
[42], [43], and heathcare [44]. In contrast, this paper adopts
MC-dropout as the UQ method to quantify the uncertainty of
sticker detection tasks in laptop refurbishing robots, thereby
studying their real-world application in a new context.

Robustness Assessment of DNNs. Robustness measures
DNNs’ reliability. Recent robustness evaluation methods focus
on adversarial robustness [45]–[47], which refers to the ability
of DNNs to maintain performance and provide reliable outputs
in the face of various perturbations, noises, and adversarial
attacks. For instance, Carlini and Wagner [2] constructed
three adversarial attack methods to evaluate the robustness
of defensively distilled networks. Madry et al. [19] proposed
a Projected Gradient Descent (PGD) attack to assess the
adversarial robustness of DNNs from the robust optimization
perspective. This paper employs a dense adversarial attack
technique to measure adversarial robustness. Regarding the
robustness metrics, in addition to measuring the robustness
using the performance metric (i.e., mAP), we further calculate
the robustness score concerning UQMs.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we conduct an empirical study to evaluate
the detection accuracy, prediction uncertainty, and adversarial
robustness of six sticker detection models in the laptop refur-
bishing software. We adopt the Monte Carlo Dropout method
to quantify the prediction uncertainty and measure uncertainty
from two aspects: uncertainty in classification and regression.
Besides, we present novel robustness metrics to evaluate
the robustness of the models regarding detection accuracy
and uncertainty. The results show Faster R-CNN v2 and
RetinaNet v2 achieve the overall best performance regarding all
metrics. Future works include quantifying uncertainties of the
entire laptop refurbishing process and automatically generating
realistic image datasets.
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F IsaCircus model for the MakePlan state of the naviga-
tion robot

Listing 6: Trans model of MakePlan for the navigation robot

1 datatype NIDS_MakePlan_Adaptation_Plan =
2 NID_i0_MakePlan_Adaptation_Plan |
3 NID_CalculateRotations_MakePlan_Adaptation_Plan |
4 NID_PlanEmptyRotation_MakePlan_Adaptation_Plan |
5 NID_PlanPositiveRotation_MakePlan_Adaptation_Plan |
6 NID_PlanNegativeRotation_MakePlan_Adaptation_Plan |
7 NID_PlanFullRotation_MakePlan_Adaptation_Plan |
8 NID_PlanPositiveFirstRotation_MakePlan_Adaptation_Plan |
9 NID_PlanNegativeFirstRotation_MakePlan_Adaptation_Plan |
10 NID_f0_MakePlan_Adaptation_Plan
11
12 record SpinConfig =
13 commands :: "(SpinCommand list)"
14 period :: "int"
15 record SpinCommand =
16 angleVelocity :: "real"
17 duration :: "real"
18 record LidarRange =
19 angleIncrement :: "real"
20 ranges :: "(real list)"
21 record BoolLidarMask =
22 values :: "(bool list)"
23 baseAngle :: "real"
24 record ProbLidarMask =
25 values :: "(real list)"
26 baseAngle :: "real"
27
28 chantype mychan =
29 share :: unit |
30 terminate :: unit |
31 internal__MakePlan_Adaptation_Plan :: "NIDS_MakePlan_Adaptation_Plan" |
32 exited_MakePlan_Adaptation_Plan :: unit |
33 exit_MakePlan_Adaptation_Plan :: unit |
34 "get_minMaxRotation" :: "real ×real" |
35 enter_i0_MakePlan_Adaptation_Plan :: unit |
36 enter_CalculateRotations_MakePlan_Adaptation_Plan :: unit |
37 enter_PlanEmptyRotation_MakePlan_Adaptation_Plan :: unit |
38 enter_PlanPositiveRotation_MakePlan_Adaptation_Plan :: unit |
39 enter_PlanNegativeRotation_MakePlan_Adaptation_Plan :: unit |
40 enter_PlanFullRotation_MakePlan_Adaptation_Plan :: unit |
41 enter_PlanPositiveFirstRotation_MakePlan_Adaptation_Plan :: unit |
42 enter_PlanNegativeFirstRotation_MakePlan_Adaptation_Plan :: unit |
43 enter_f0_MakePlan_Adaptation_Plan :: unit |
44 entered_f0_MakePlan_Adaptation_Plan :: unit |
45 aviol :: unit |
46 gviol :: unit
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47
48 abbreviation "assume b Q P ≡(if b then P else aviol →Q)"
49 abbreviation "guar b P ≡(if b then P else gviol →STOP)"
50
51 actions is "(mychan, unit) action" where
52 "SSTOP = share →SSTOP" |
53 " Trans_MakePlan_Adaptation_Plan(n) =
54 ((SSTOP △(get_minMaxRotation?minMaxRotation →(assume (fst minMaxRotation ≤snd

minMaxRotation) (Trans_MakePlan_Adaptation_Plan(n)) ((((((((((((((
55 ((n = NID_i0_MakePlan_Adaptation_Plan) & (((internal__MakePlan_Adaptation_Plan.

NID_i0_MakePlan_Adaptation_Plan →Skip);; (
enter_CalculateRotations_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(NID_CalculateRotations_MakePlan_Adaptation_Plan))
)))

56 □
57 ((n = NID_CalculateRotations_MakePlan_Adaptation_Plan) & (((((fstminMaxRotation) =

(sndminMaxRotation))) & (((internal__MakePlan_Adaptation_Plan.
NID_CalculateRotations_MakePlan_Adaptation_Plan →Skip);; ((SSTOP △(
exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((
exited_MakePlan_Adaptation_Plan →Skip);; (
enter_PlanEmptyRotation_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(NID_PlanEmptyRotation_MakePlan_Adaptation_Plan)))
))))))))

58 □
59 ((n = NID_CalculateRotations_MakePlan_Adaptation_Plan) & ((((((fstminMaxRotation) >

0) ∧((sndminMaxRotation) > 0))) & (((internal__MakePlan_Adaptation_Plan.
NID_CalculateRotations_MakePlan_Adaptation_Plan →Skip);; ((SSTOP △(
exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((
exited_MakePlan_Adaptation_Plan →Skip);; (
enter_PlanPositiveRotation_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(NID_PlanPositiveRotation_MakePlan_Adaptation_Plan
)))))))))))

60 □
61 ((n = NID_CalculateRotations_MakePlan_Adaptation_Plan) & ((((((fstminMaxRotation) <

0) ∧((sndminMaxRotation) < 0))) & (((internal__MakePlan_Adaptation_Plan.
NID_CalculateRotations_MakePlan_Adaptation_Plan →Skip);; ((SSTOP △(
exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((
exited_MakePlan_Adaptation_Plan →Skip);; (
enter_PlanNegativeRotation_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(NID_PlanNegativeRotation_MakePlan_Adaptation_Plan
)))))))))))

62 □
63 ((n = NID_CalculateRotations_MakePlan_Adaptation_Plan) & (((((((fstminMaxRotation)

< 0) ∧((sndminMaxRotation) > 0)) ∧(((sndminMaxRotation) - (fstminMaxRotation)) >
1))) & (((internal__MakePlan_Adaptation_Plan.

NID_CalculateRotations_MakePlan_Adaptation_Plan →Skip);; ((SSTOP △(
exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((
exited_MakePlan_Adaptation_Plan →Skip);; (
enter_PlanFullRotation_MakePlan_Adaptation_Plan →Trans_MakePlan_Adaptation_Plan
(NID_PlanFullRotation_MakePlan_Adaptation_Plan)))))))))))

64 □
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65 ((n = NID_CalculateRotations_MakePlan_Adaptation_Plan) & (((((((fstminMaxRotation)
< 0) ∧((sndminMaxRotation) > 0)) ∧((-(fstminMaxRotation)) < (sndminMaxRotation))
)) & (((internal__MakePlan_Adaptation_Plan.
NID_CalculateRotations_MakePlan_Adaptation_Plan →Skip);; ((SSTOP △(
exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((
exited_MakePlan_Adaptation_Plan →Skip);; (
enter_PlanPositiveFirstRotation_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(
NID_PlanPositiveFirstRotation_MakePlan_Adaptation_Plan)))))))))))

66 □
67 ((n = NID_CalculateRotations_MakePlan_Adaptation_Plan) & (((((((fstminMaxRotation)

< 0) ∧((sndminMaxRotation) > 0)) ∧((-(fstminMaxRotation)) ≥(sndminMaxRotation))
)) & (((internal__MakePlan_Adaptation_Plan.
NID_CalculateRotations_MakePlan_Adaptation_Plan →Skip);; ((SSTOP △(
exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((
exited_MakePlan_Adaptation_Plan →Skip);; (
enter_PlanNegativeFirstRotation_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(
NID_PlanNegativeFirstRotation_MakePlan_Adaptation_Plan)))))))))))

68 □
69 ((n = NID_PlanEmptyRotation_MakePlan_Adaptation_Plan) & (((

internal__MakePlan_Adaptation_Plan.
NID_PlanEmptyRotation_MakePlan_Adaptation_Plan →Skip);; ((SSTOP △(
exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((
exited_MakePlan_Adaptation_Plan →Skip);; (enter_f0_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(NID_f0_MakePlan_Adaptation_Plan)))))))))

70 □
71 ((n = NID_PlanPositiveRotation_MakePlan_Adaptation_Plan) & (((

internal__MakePlan_Adaptation_Plan.
NID_PlanPositiveRotation_MakePlan_Adaptation_Plan →Skip);; ((SSTOP △(
exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((
exited_MakePlan_Adaptation_Plan →Skip);; (enter_f0_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(NID_f0_MakePlan_Adaptation_Plan)))))))))

72 □
73 ((n = NID_PlanNegativeRotation_MakePlan_Adaptation_Plan) & (((

internal__MakePlan_Adaptation_Plan.
NID_PlanNegativeRotation_MakePlan_Adaptation_Plan →Skip);; ((SSTOP △(
exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((
exited_MakePlan_Adaptation_Plan →Skip);; (enter_f0_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(NID_f0_MakePlan_Adaptation_Plan)))))))))

74 □
75 ((n = NID_PlanFullRotation_MakePlan_Adaptation_Plan) & (((

internal__MakePlan_Adaptation_Plan.NID_PlanFullRotation_MakePlan_Adaptation_Plan
→Skip);; ((SSTOP △(exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((

exited_MakePlan_Adaptation_Plan →Skip);; (enter_f0_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(NID_f0_MakePlan_Adaptation_Plan)))))))))

76 □
77 ((n = NID_PlanPositiveFirstRotation_MakePlan_Adaptation_Plan) & (((

internal__MakePlan_Adaptation_Plan.
NID_PlanPositiveFirstRotation_MakePlan_Adaptation_Plan →Skip);; ((SSTOP △(
exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((
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exited_MakePlan_Adaptation_Plan →Skip);; (enter_f0_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(NID_f0_MakePlan_Adaptation_Plan)))))))))

78 □
79 ((n = NID_PlanNegativeFirstRotation_MakePlan_Adaptation_Plan) & (((

internal__MakePlan_Adaptation_Plan.
NID_PlanNegativeFirstRotation_MakePlan_Adaptation_Plan →Skip);; ((SSTOP △(
exit_MakePlan_Adaptation_Plan →Skip));; (SSTOP △((
exited_MakePlan_Adaptation_Plan →Skip);; (enter_f0_MakePlan_Adaptation_Plan →
Trans_MakePlan_Adaptation_Plan(NID_f0_MakePlan_Adaptation_Plan))))))))

80 □
81 ((n = NID_f0_MakePlan_Adaptation_Plan) & (terminate →Skip))
82 ))))))) "
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