
D3.2

Monitorable and trustworthy verification loops

WP3

Public Document

Grant Agreement 101133807

Project RoboSapiens

Deliverable Number D3.2

Version 1.2

Due Month M18

Date June 2025

http://robosapiens-eu.tech/

Funded by the European Union. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the Euro-
peanUnion or HADEA. Neither the EuropeanUnion nor the granting authority
can be held responsible for them.

http://robosapiens-eu.tech/


D3.2 - Monitorable and trustworthy verification loops (Public Document)

Contributors:

Roland Behrens, IFF
Robert Scharping, IFF
Yannick Bollmann, IFF
Morten Haahr Kristensen, AU
Thomas Wright, AU
Claudio Gomes, AU
Lukas Esterle, AU
Carlos Isasa, AU
Avramelou Loukia, AUTH
Akrivousis Dimitrios, AUTH
Katsikas Dimitrios, AUTH
Moustakidis Vasileios, AUTH
Tosidis Pavlos-Apostolos, AUTH
Tefas Anastasios, AUTH
Nikolaidis Nikolaos, AUTH
Passalis Nikolaos, AUTH

Editors:

Yannick Bollmann, IFF
Claudio Gomes, AU

Internal Reviewers:

Guoyuan Li, NTNU
Thomas Peyrucain, PAL
Peter Gorm Larsen, AU

Consortium:

Aarhus University AU University of Antwerp UA

Aristotle University of
Thessaloniki

AUTH Norwegian University of
Science and Technology

NTNU

Danish Technological
Institute

DTI PAL Robotics PAL

Fraunhofer IFF IFF ISDI Accelerator ISDI

University of York UoY Simula Research Lab SRL

2



D3.2 - Monitorable and trustworthy verification loops (Public Document)

Document Revision History:

Ver Date Author Description

0.1 29-01-2025 Yannick Bollmann Document created

0.2 03-03-2025 All contributors Finished strucutre and
subsection titles

0.3 19-03-2025 Thomas Wright Added content on dy-
namic and distributed
monitoring.

0.4 19-03-2025 Morten Haahr Kristensen Added and revised
content on dynamic
and distributed moni-
toring.

0.5 31-03-2025 Carlos Isasa Added survey section.

0.6 01-05-2025 Claudio Gomes Added static and dy-
namic properties for
the case studies.

0.7 09-05-2025 All contributors Revision of content;
added introduction and
conclusion.

0.8 23-05-2025 Claudio Gomes Revision of conclusion
and introduction.

0.9 30-05-2025 Yannick Bollmann Document ready for in-
ternal review.

1.0 16-06-2025 Claudio Gomes, Yannick Bollmann Added appendix, ad-
dressed first review
feedback.

1.1 20-06-2025 Claudio Gomes Addressed additional
review comments.

1.2 27-06-2025 Yannick Bollmann Addressed last review
comments and final ed-
its.

3



D3.2 - Monitorable and trustworthy verification loops (Public Document)

Abstract
Deliverable D3.2 reports the progress of RoboSAPIENS work package 3 until the
project milestone M18.

In section 1 an overview is given of the findings of the systematic survey on the state
of art of self adaptive system with a particular focus on MAPE-K loops (defined in
previous deliverables).

Section 3 describes the implementation of monitoring for Trustworthiness Check-
ers as dynamic property monitoring (section 3.2) and distributed monitoring (sec-
tion 3.3).

Lastly, in section 4 the implementation of monitoring for properties of the Ro-
boSAPIENS case studies are presented.

The appendix contains three papers that are related to the content of this deliver-
able:

• A.1 - State of the Art of the MAPE-K Loop: Architecture, Implementation and
Verification (summarized in section 2)

• A.2 - Runtime Verification of Autonomous Systems utilizing Digital Twins as a
Service (summarized in section 3.1)

• A.3 - DynSRV: Dynamically Updated Properties for Stream Runtime Verifica-
tion (summarized in section 3.2)

4



D3.2 - Monitorable and trustworthy verification loops (Public Document)

Abbreviations

CPS cyber-physical system

DSU Dynamic Software Updating

DUP Dynamically Updated Property

DT Digital Twin

LiDAR Light Detection And Ranging

LTL Linear Temporal Logic

MAPE-K Monitor, Analyse, Plan, Execute - Knowledge

MAPLE-K Monitor, Analyse, Plan, Legitimate, Execute - Knowledge

MTL Metric Temporal Logic

past-CTL past Computation Tree Logic

FMU Functional Mock-up Unit

PT-DTL Past-Time Distributed Temporal Logic

RoboSAPIENS Robotic Safe Adaptation In Unprecedented Situations

ROS2 Robot Operating System 2

RV Runtime Verification

SAS Self-Adaptive Systems

STL Signal Temporal Logic

SRV Stream Runtime Verification

SwarmSTL Swarm Signal Temporal Logic

TC Trustworthiness Checker

5



D3.2 - Monitorable and trustworthy verification loops (Public Document)

Contents

1 Introduction 7

2 Main Findings of Systematic Survey 8
2.1 Architecture Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Monitoring for Trustworthiness Checkers in the MAPLE-K loop 15
3.1 Tutorial on Runtime Verification for Self-Adaptive Systems . . . . . . . . 15
3.2 Dynamic runtime monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Distributed monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Planned Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Preliminary Integration of Trustworthiness Checkers 25
4.1 Robotic laptop refurbishment case from DTI . . . . . . . . . . . . . . . . . 25
4.2 The Robot Navigation Case from PAL Robotics . . . . . . . . . . . . . . . 26
4.3 Ship Motion Prediction Case from NTNU . . . . . . . . . . . . . . . . . . . . 27
4.4 Dynamic Risk Model Case Study from Fraunhofer IFF . . . . . . . . . . . 27

5 Conclusion 29

A Appendix 33
A.1 State of the Art of the MAPE-K Loop: Architecture, Implementation

and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.2 Runtime Verification of Autonomous Systems utilizing Digital Twins

as a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 DynSRV: Dynamically Updated Properties for Stream Runtime Verifi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6



D3.2 - Monitorable and trustworthy verification loops (Public Document)

1 Introduction

This deliverable reports on the progress in RoboSAPIENS work package 3 until
month 18. Starting with section 2, this introduction will briefly present the findings
of the systematic survey regarding the state of the art of the MAPE-K (Monitor, An-
alyze, Plan, Execute, Knowledge) loop. The survey was first reported in Deliverable
D3.1 [GIK+24], but has since been expanded.

The main part of this deliverable focuses on the development of monitorable and
trustworthy verification loops. To fulfill this task, the RoboSAPIENS project will
implement Trustworthiness Checkers (TCs) in the proposed MAPLE-K architec-
ture (see [ANM24]). In section 3 we describe the implementation of monitoring
techniques for these Trustworthiness Checkers, more specifically dynamic prop-
erty monitoring (section 3.2) and distributed monitoring (section 3.3).

Section 4 outlines how these techniques can be applied to the RoboSAPIENS case
studies and specific use case properties, that have been developed together with
the case study owners.

This deliverable mainly advances the following RoboSAPIENS overarching objec-
tives:

O2 Advance safety engineering techniques to assure robotic safety not only be-
fore but also during adaptation and after adaptation has taken place

Section 2 presents the insights that justify thework on section 3 that promotes
this objective.

O4 Assure trustworthiness of systems that use both deep-learning and computa-
tional architectures for robotic self-adaptation

Section 4 discusses preliminary integration of TCs in the RoboSAPIENS ar-
chitecture, which is a key step towards achieving this objective. In particular,
different safety properties are formalized for each case study, which is a nec-
essary step towards ensuring trustworthiness of the systems.

7



D3.2 - Monitorable and trustworthy verification loops (Public Document)

2 Main Findings of Systematic Survey

In the continuation of the preliminary work introduced in D3.1 [GIK+24], we have
surveyed the state of the art of the MAPE-K loop, classifying papers in one of three
categories: architecture, implementation or verification.

Our survey highlights a significant gap in current research on self-adaptive sys-
tems, particularly those involving physical dynamics. Existing surveys predomi-
nantly focus on systems that rely on passive data collection for anomaly detection,
neglecting scenarios where active data gathering is necessary to reduce uncer-
tainty. This oversight hampers the formal verification of self-adaptive systems, es-
pecially within MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge) loops. The
RoboSAPIENS team recognizes this issue and addresses it in more detail in the
concluding sections of the report.

Notably, the team reviewed 213 scientific articles to identify innovative concepts
that exceed current capabilities. The resulting insights have informed the project
team on a custom MAPLE-K loop architecture, aligning closely with project ob-
jectives, particularly in enabling robots to adapt to unpredictable structural and
environmental changes.

In terms of safety and trustworthiness, the team conducted thorough reviews of
industrial standards and legal requirements to ensure compliance during robotic
adaptation. These findingswill support the development of Trustworthiness Check-
ers within theMAPLE-K loop. Additionally, the team examined how to verify safety-
critical, non-functional requirements using formal methods. A focused discussion
on trust in robotics further refines the understanding and implementation of trust-
worthy adaptation mechanisms. Collectively, these insights enable the RoboSAPI-
ENS project to push the boundaries of current research and deliver robust, adapt-
able, and cross-domain robotic systems.

In order to differentiate our work from other surveys, we have followed a sys-
tematic approach, detailed in fig. 1. The study followed a structured multi-phase
approach, beginning with the identification of gaps in existing literature related
to the MAPE-K loop in self-adaptive systems. Phase 1 involved defining research
goals and formulating five key research questions, which focused on implementa-
tion techniques, their suitability, verification methods, interrelationships between
MAPE-K components, and common architectural patterns. A research protocol
was developed and refined through internal review. In Phase 2, a keyword-based
search using Scopus identified the initial set papers, which were narrowed down af-
ter excluding non-relevant studies. Snowballing methods added more papers, and
a cutoff was applied to exclude works published before 2010, resulting in a final
dataset of 347 relevant studies. Phase 3 focused on extracting relevant data from
these studies to address the research questions, involving a thematic analysis that
led to a preliminary classification of implementation, verification, and architecture-
related papers. In Phase 4, content analysis helped create taxonomies for these
categories, while narrative synthesis identified trends and knowledge gaps. These
findings were aligned with the research questions to generate practical insights.
The final phase, Phase 5, compiled all results into a comprehensive manuscript, ac-
companied by a publicly accessible replication package to support transparency

8



D3.2 - Monitorable and trustworthy verification loops (Public Document)

and future research replication.

We summarize here the main findings of the survey, which is available in full in
Appendix A.1.

Phase 5: ReportingPhase 4: Data synthesisPhase 3: Data Extraction

Phase 2: Search and SelectionPhase 1: Planning

Review needs
identification

Goal and RQs
definition

Protocol
definition

Protocol

Evaluator
SCOPUS

Keyword
search

keywords: mape-k OR (self-
adaptive AND loop)

374 studies

Study
selection/inclusion/exclusion

Consensus Exclusion

347 studies

Snowballing

Thematic
analysis

Meta-
Classification

Answers to
RQs

Writing

Final
Classification

Replication Package
Preparation

Content
analysis

Narrative
synthesis

Manuscript Replication
Package

Workflow

Input/Output

Figure 1: Study Design.

2.1 Architecture Findings

We can classify MAPE-K architectures with respect to 3 different axis, introduced in
D3.1 [GIK+24]. component cardinality, component distribution and communication
flows, detailed next.

Component Cardinality Based on how many software components implement
each phase of the MAPE-K loop. We differentiate between n:1 (monolotic, e.g., all
all phases implemented in one software component), n:n (one to one) and n:m (one
to many).

Component Distribution Based on how many devices realize the implementa-
tion. We distinguish between single/monolitic, single/component-based (single
system but multiple components) and distributed/component-based

Communication Flows Based on how a system handles communication between
them MAPE-K phases. We have identified the following categories: sequential/
unidirectional where several MAPE-K loops are connected but communication
is unidirectional, parallel/bidirectional multiple loops in parallel that communi-
cate with each other, parallel/independent running in parallel but no communica-
tion, hierarchicalmultiple MAPE-K loops form a hierarchical communication struc-
ture.

9



D3.2 - Monitorable and trustworthy verification loops (Public Document)

Architectural Extension We have identified a subset of papers that extend the
loop with additional phases, running in parallel of sequentially to existing phases.
We have classified them into the following categories:

• Informative Phases: Results of this phase are used to inform or assist the
operation of an existing phase by performing other functionality.

• Recording Phase: Records and analyses information about the MAPE-K loop
itself.

• Reflexive Action Phase: This phase acts as a shortcut between the Monitor
and Execute phases, bypassing the rest of the loop if some conditions are met
during the monitoring phase.

• Rule Augmentation Phase: Adds new rules to the Plan component adaptively.

2.2 Implementation

Monitoring We have identified the following categories in our taxonomy:

• Direct Feed: Data is send to analyze untreated.

• Filtered Feed: Anomalies are detected and data is filtered.

• Batch: Data is send in batches instead of a real-time approach.

• Decentralized: Distributed monitoring happens accross different nodes.

Analyse We have identified the following categories in our taxonomy:

• Anomaly Detection: Either via a rule-based approach or a machine-learning
approach, deviations from the expected data are detected.

• Feature Extraction: Data can be treated to extract desired features from it,
via machine-learning techniques or semantic modelling.

• Data Preprocessing: When the Monitor phase produces raw data, filters or
semantic procesing can be used to generate cleaner data.

• Adaptation Plan Selection: The Analyse phase can be used to pre-select an
adaptation plan for the Planning phase to study.

Plan We have identified the following categories in our taxonomy:

• Rule and Policy: Logical rules and system policies are used to guide the plan
selection.

• Reasoning Based: Semantic reasoning can be used to select a way to deal
with the unexpected behaviour.

• Optimization Based: The plan is created via solving an optimaztion problem.

• Offline Machine-Learning: A machine-learning algorithm, trained before the
system is deployed, is used in order to make the planning decisions.

• Online Machine-Learning: A modified version of the offline machine-learning
algorithms that is able to learn during system execution.

10



D3.2 - Monitorable and trustworthy verification loops (Public Document)

Execute We have identified the following categories in our taxonomy:

• Path Through: The Execution phase is considered a passive phase that just
deploys the adaptation generated in the Plan phase.

• Controlled: A decision unit that checks if the plan is applicable is used.

Knowledge We have classified the contents of the Knowledge Base (KB) accord-
ing to the following categories:

• Data: Represents all forms of monitored data, including sensor readings, sys-
tem state information, historical performance data, and real-time observa-
tions.

• Logs: Encompasses all recorded logs, including event histories, error logs,
execution traces, and runtime records.

• Configurations: Covers system settings, configuration files, mapping defini-
tions, and parameter descriptions.

• Strategies: Includes high-level plans, policies, decision strategies, goal defini-
tions, and adaptation tactics.

• Rules: Refers to policies, decision rules, security constraints, and predefined
conditions that dictate system behavior.

• Metrics: Comprises performance indicators, quality attributes, and quantita-
tive measures used for system evaluation.

• Models: Encompasses a wide range of modeling elements, including system
topology, architectural schemas, behavior patterns, and ontologies.

• Resources: Includes all necessary resources, parameters, dependencies, and
supporting data required for MAPE-K operations.

Note that a KB may contain several categories.

Results The distribution of categories per phase is found in fig. 2 (acronyms are
defined in the survey). The value n defined in the caption of each graph defines how
many papers discuss the corresponding phase. The distribution of papers across
the MAPE-K phases reflects varying complexity and roles of each component. In
the Monitor phase, the dominant “Direct-feed” category highlights a preference
for simple, straightforward data collection methods. The Analyse phase is primarily
used for anomaly detection using either rule-based or machine learning techniques,
occasionally also serving in feature extraction and preprocessing. The Plan phase
shows a more balanced distribution, reflecting its complexity, with “Rules and pol-
icy” being the most common approach, followed by optimization-based methods.
Execution is typically the simplest phase, often acting as a pass-through, though
some papers detail controlled execution strategies. Lastly, the Knowledge compo-
nent mainly stores monitored data, system models, or adaptation rules.

Additionally, we have studied how associated are the taxonomies on each phase,
i.e. given a phase is implemented in a certain way, how are the other phases imple-

11



D3.2 - Monitorable and trustworthy verification loops (Public Document)

Monitoring Classes, n:138

Direct-feed

Filtered-feed

Decentralized

Batch

Analysis Classes, n:168

Anomaly Detection (RB)

Anomaly Detection (ML)

Feature Extraction Data Preprocessing

Adaptation Plan Selection

Planning Classes, n:155

Rule and policy

Optimization

Online learning
Semantic Reasoning

Other

Offline learning

Tree

Execution Classes, n:159

Pass-Through

Controlled

Data
Mod

els
Ru

les

Str
ate

gie
s

Log
s

Metr
ics

Con
fig

ura
tio

ns

Re
sou

rce
s

Knowledge saved data, n:90

0

10

20

30

40

50

Figure 2: Distribution of classes of the MAPE phases and objects stored in K.

mented and if there is any correlation. Contingency tables showing these relations
can be found in fig. 3. The knowledge component K is presented as a bar chart.

The tables reveal key correlations between MAPE-K phases and their implemen-
tation categories. A strong link exists between Rule and Policy planning and Di-
rect Feed monitoring, particularly in applications that simplify both Monitor and
Plan phases. A secondary correlation appears between Batch monitoring and Se-
mantic Reasoning planning, though the limited use of Batch monitoring makes
this connection unreliable. In the A-P table, Rule-Based Anomaly Detection aligns
with Rule and Policy planning due to the simplicity of empirical rules, often used
in exploratory application studies. Learning-based planning also correlates with
Analyse methods: ML Anomaly Detection often pairs with Online Learning, using
shared neural networks, while Feature Extraction aligns with Offline Learning in
data-focused studies like Ortiz et al. Additionally, the M-A table highlights that
Direct Feed monitoring often negates the need for separate Data Preprocessing
in the Analyse phase. Associations involving the Execute phase are considered
insignificant due to a sparse and imbalanced category distribution.

12



D3.2 - Monitorable and trustworthy verification loops (Public Document)

Batch Decentralized Direct-feed Filtered-feed
M class

Adaptation Plan Selection

Anomaly Detection (ML)

Anomaly Detection (RB)

Data Preprocessing

Feature Extraction
A 

cl
as

s

Batch Decentralized Direct-feed Filtered-feed
M class

Offline learning

Online learning

Optimization

Other

Rule and policy

Semantic Reasoning

Tree

P 
cl

as
s

Batch Decentralized Direct-feed Filtered-feed
M class

Controlled

Pass-Through

E 
cl

as
s

Ad
ap

tat
ion

 Pla
n S

ele
cti

on

Ano
maly

 Dete
cti

on
 (M

L)

Ano
maly

 Dete
cti

on
 (R

B)

Data
 Pr

ep
roc

ess
ing

Fea
tur

e E
xtr

act
ion

A class

Offline learning

Online learning

Optimization

Other

Rule and policy

Semantic Reasoning

Tree

P 
cl

as
s

Ad
ap

tat
ion

 Pla
n S

ele
cti

on

Ano
maly

 Dete
cti

on
 (M

L)

Ano
maly

 Dete
cti

on
 (R

B)

Data
 Pr

ep
roc

ess
ing

Fea
tur

e E
xtr

act
ion

A class

Controlled

Pass-Through

E 
cl

as
s

Controlled Pass-Through
E class

Offline learning

Online learning

Optimization

Other

Rule and policy

Semantic Reasoning

Tree

P 
cl

as
s

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 3: Visualization of contingency tables between MAPE phases (normalized).

2.3 Verification

From the papers that study ways to verify the behaviour of MAPE-K loops, we
studied 3 aspects: formalisms, including themodelling and specification languages;
verification time, defined as the time to use the verification approach and self-
adaptation approach which describes the mathematical abstraction used to model
self-adaptation. Results can be seen in fig. 4

CTL
LTL
PCTL
TCOZ
TCTL
other

Formalism

design time
offline
runtime

Verification
Time

aspect-oriented
direct
layered
logical
multi-agent
reactive
reflective
virtual machine

Self-Adaptation
Approach

Figure 4: An overview of the papers considered by requirement specification lan-
guage, time of verification, and the approach taken to modelling self-adaptation.

13



D3.2 - Monitorable and trustworthy verification loops (Public Document)

The majority of works have focused on using the MAPE-K loop to monitor its own
behavior, or as a verified monitor for the managed system. Only few works have
considered runtime verification of the whole self-adaptive system as a means to
provide additional safety guarantees.

The complete survey can be found in Appendix A.1:

• Carlos Isasa, ZiggyAttala, Morten H. Kristensen, Sahar Nasimi Nezhad, Thomas
M. Roehr, Robert Scharping, Pavlos Tosidis, Claudio Gomes, Vasileious Mous-
takidis, Theodoris Manousis, Lukas Esterle, Ana Cavalcanti, Peter Gorm Larsen.
“State of the Art of the MAPE-K Loop: Architecture, Implementation and Ver-
ification”, ACM Computing Surveys Submitted 2025

14



D3.2 - Monitorable and trustworthy verification loops (Public Document)

3 Monitoring for Trustworthiness Checkers in theMAPLE-
K loop

To ensure the reliability and safety of self-adaptive systems within the RoboSAPI-
ENS architecture, it is essential to monitor their behavior continuously—even as
the systems evolve during operation. Various techniques in runtime monitoring
and runtime enforcement have been developed and employed [BFFR18, PFJM14].
These methods allow operators to define properties of the system, that are then
monitored at runtime. If a property is violated, the system can either be repaired
or the operator can be notified. This allows for the detection of anomalies and the
enforcement of safety properties in real-time.

However, these techniques are often limited to a single system hindering appli-
cation in distributed systems and systems-of-systems. Dynamically changing dis-
tributed systems, where new components or systems may be added or removed
at runtime, require a centralised component to monitor all relevant elements and
components. However, this also requires all systems to register with the central
entity as well as the central entity to keep track of the state of all systems, leading
to a massive overhead in terms of communication and processing. Additionally,
adequate communication networks need to be available. Given the potential dy-
namics of self-adaptive and self-organising systems, this might not always be given.
In turn, this might compromise the adequate intervention in case of property vio-
lations due to latency and response times. In addition, the centralised entity may
become a single point of failure, leading to a complete breakdown of the monitor-
ing system if it fails or becomes unreachable.

Moreover, since the systems change, it is reasonable to assume that the properties
of the system also change. This means that the properties need to be updated at
runtime, which is not possible with static monitoring techniques. In addition, the
properties may be defined in a way that they are not applicable to all components
of the system. This means that the properties need to be adapted to the specific
components and their context.

This section introduces the ongoing implementation of Trustworthiness Checkers
(TCs) in the MAPLE-K loop, focusing on two core aspects: dynamic property mon-
itoring and distributed monitoring. These approaches address the limitations of
static verification methods by allowing monitors to adapt in response to runtime
changes and by distributing monitoring tasks across system components. To-
gether, these mechanisms form a foundation for verifying dynamic and decentral-
ized systems, enabling robust and trustworthy self-adaptive behaviors. As part of
this effort, we presented a hands-on tutorial on Runtime Verification (RV) for Self-
Adaptive Systems (SAS) at the ACSOS conference. The tutorial demonstrated how
RV tools can be practically integrated, and its contents are summarised below.

3.1 Tutorial on RuntimeVerification for Self-Adaptive Systems

In this section, we summarise the tutorial on RV for SAS presented at the ACSOS
2024 conference. The work consisted of a tutorial paper and a hands-on session
during the conference. The tutorial focused on practical techniques for verifying

15



D3.2 - Monitorable and trustworthy verification loops (Public Document)

autonomous systems using RV technologies within the context of Digital Twins
(DTs). The full tutorial paper is provided in section A.2, and a summary is provided
below.

Summary

SAS are increasingly capable of adapting to complex and dynamic environments,
but this autonomy complicates reasoning about their correctness. RV offers a
lightweight verification approach that can ensure system properties are upheld
even during autonomous behavior.

The tutorial demonstrated the integration of RV tools into theDigital Twins as a Ser-
vice (DTaaS) platform, showcasing how monitoring components can be deployed
alongside or within DT-based SAS. The use case centered around an Incubator DT,
a SAS that maintains a stable internal temperature. The system includes anomaly
detection and energy-saving services, which respond to events such as the lid of
an insulated Incubator box being opened.

Five integration strategies were presented:

• NuRVFMUMonitor: Amonitor generated as a Functional Mock-upUnit (FMU)
for early co-simulation-based validation of system behavior.

• NuRV FMU Service Monitor: Reuses the FMU in a service-oriented manner,
integrated into the live system via RabbitMQ.

• NuRV ORBit2 Monitor: Deploys NuRV as a remote monitoring server ac-
cessed via CORBA for fully decoupled verification.

• TeSSLa Passive Monitor: Uses the TeSSLa language for passive monitoring
based on event streams, with integration via Telegraf.

• TeSSLa Active Monitor: Extends passive monitoring with runtime enforce-
ment, allowing the system to adapt in response to detected anomalies.

Attendees were guided through the hands-on deployment of these techniques us-
ing the DTaaS platform. By engaging with both NuRV and TeSSLa, participants
learned how to practically apply RV to their own systems and gained insight into
the trade-offs of different deployment architectures.

The tutorial emphasized cross-community knowledge exchange between researchers
in SAS, DTs, and RV. For RoboSAPIENS, the tutorial provided valuable knowledge
about exisitng RV tools and their practical application in SAS, which helped with
development of the TC.

3.2 Dynamic runtime monitoring

The work presented below is an extended abstract of the paper [KWG+25], which
introduces DynSRV, a framework that allows stream runtime verification properties
to be dynamically updated. The full paper, which is currently in submission for the
Runtime Verification 2025 conference, is included in section A.3.

16



D3.2 - Monitorable and trustworthy verification loops (Public Document)

3.2.1 Introduction

Modern software systems, such as self-adaptive robots, frequently evolve during
runtime. Traditional runtime verification struggles in such settings because speci-
fications are assumed to be static. When systems adapt via DSU or autonomously,
specifications must also evolve to reflect changing requirements.

To address this, we introduce DynSRV, a Stream Runtime Verification (SRV) lan-
guage with first-class support for dynamically updating RV properties. It enables
properties to be defined, replaced, or refined at runtime, without requiring a com-
plete system restart. This is especially crucial in systems where certain properties
rely on extensive historical context, where restarting the runtime verification ser-
vice would result in the loss of that accumulated state, leading to incorrect verdicts
or requiring costly recomputation. DynSRV allows monitors to evolve while pre-
serving internal history, ensuring continuity and correctness in long-running adap-
tive systems.

In the paper, we provide a motivational example for a scenario where a robot in a
manufacturing scenario may need DynSRV.

3.2.2 Language Features and Semantics

DynSRV extends standard SRVwith two dynamic primitives, whichwe call Dynamically
Updated Properties (DUPs):

• defer(ϕ): delays the specification of property ϕ to a later point, allowing a
single update.

• dynamic(ϕ): allows ϕ to be updated repeatedly during execution.

In the semantics section of the paper, we define the formal denotational semantics
of DUPs using a fixed-point approach over stream contexts. This includes a formal
definition of defer and dynamic in relation to stream namespaces and contexts. It
also defines the semantics of our DUP helper functions, update(ϕ1, ϕ2), when(ϕ), and
default(ϕ, c).

3.2.3 Design Patterns for Adaptation

In the paper, we present design patterns for writing specifications that evolve:

• Openproperties: Unrestricted use of DUPs. Following this pattern, the sender
is responsible for ensuring the safety and validity of the provided property.

• Weaken: Decrease the restrictions on a requirement using DUPs.

• Strengthen: Increase the restrictions on a requirement using DUPs.

• Refinement: Replace old rules while ensuring backward compatibility.

Furthermore, we define design patterns inspired by well-known adaptation se-
mantics from the Dynamic Software Updating (DSU) literature, illustrated in fig. 5.
In DynSRV, one-point adaptation is the default behavior of DUPs. We provide
concrete specification examples for expressing both guided adaptation and over-

17



D3.2 - Monitorable and trustworthy verification loops (Public Document)

lap adaptation, demonstrating how these semantics can be encoded using Dyn-
SRV.

SPROP TPROP

AREQ

(a) One-point adaptation, where TPROP

is used immediately upon arrival.

RCOND

SPROP TPROP

AREQ

(b) Guided adaptation, where TPROP is
used when RCOND is satisfied.

RCOND

SPROP
TPROP

AREQ

(c) Overlap adaptation, where TPROP is
used alongside SPROP until the RCOND is
satisfied, whereafter only TPROP is used.

property before adaptation

property during adaptation

property after adaptation

interval

Figure 5: Adaptation semantics proposed by Zhang and Cheng, figure adapted
from [ZC06] with minor modifications for SRV.

3.2.4 Memory Management Strategies

DUPs introduces unique requirements on the implementation to ensure efficient
memory management, as there exists a trade-off between allowing dynamic prop-
erties to access historical data and garbage collecting unneeded data. To bal-
ance memory usage and trace availability, we explore three memory management
strategies with regards to this trade-off:

• Full history retention: Ensures solvability but loses bounded memory (BM).

• Static dependency declarations: Requires users to annotate expected de-
pendencies.

• Dynamic dependency graphs: Dynamically tracks dependencies to preserve
BM and expressiveness.

3.2.5 Implementation and Evaluation

DynSRV is implemented in Rust as part of the TC, using amodular architecture sup-
porting both constraint-based and actor-based backends. The actor model han-
dles dynamic dependencies via pub-sub channels, allowing asynchronous updates
with minimal runtime overhead.

Performance evaluations demonstrate the ability to process over 100,000 events
with property updates in under 500ms. Static properties incur negligible overhead
compared to direct monitoring.

18



D3.2 - Monitorable and trustworthy verification loops (Public Document)

3.2.6 Future Work

Future work includes extending DynSRV to support timed, asynchronous, and dis-
tributed specifications and evaluating it on RoboSAPIENS case studies.

3.3 Distributed monitoring

Traditional centralised runtime monitors face a number of challenges:

• Auditing Overhead: The centralised monitor may introduce a signification
bottleneck in the overall system since large quantities of data may need be
sent to the centralised monitor for auditing. For example, in the case of han-
dling LiDAR occlusions from a collection of robots with a centralised monitor,
all the LiDAR data from all the robots would need to be sent to the centralised
monitor alongside their control decisions.

• Locality of Response and Latency Many types of failures are localised to a
single component or a single subsystem (e.g. a single stage of an individual
robot’s MAPE-K loop). In these cases, a centralised monitor may not be able
to respond to the failure in a timely manner since it must wait for all relevant
data to be sent to it before it canmake a decision. For example, if an individual
robot’s planning phase breaks its deadline, it may be appropriate to reject the
current adaptation cycle. However, if the robot must wait for the centralised
monitor to make a decision, it may be unable to adapt to other anomalies until
it has received a verdict.

• Reliability: If the only monitor of individual system components is in the form
of a centralised monitor, then it is impossible to check reliability of compo-
nents in the absence of a connection to the centralised monitor. For example,
if a robot is monitored by a centralised checker there is no way of specifying
that the robot should stop moving if it loses network connectivity, since the
checker can no longer communicate with the robot.

We propose a distributed runtime monitoring framework that allows for the spec-
ification of distributed runtime monitors. These monitors can be deployed on dif-
ferent nodes of a distributed system. This allows for the monitoring of the sys-
tem as a whole in the absence of a central entity to keep track of all components.
Utilising a stream-based monitoring language, we can express the monitors in a
more flexible and expressive way. This allows for the specification of distribution
constraints, which define the requirements and constraints on the monitors. Fur-
thermore, stream-based runtime monitors can be programmed, allowing for more
complex monitors. This is particularly useful in the context of distributed systems,
where the behaviour of the system may change over time and the monitors need
to adapt accordingly. To ensure monitors are deployed and operated continuously
and without interruption, we also propose a self-adaptive scheduler for migrating
monitors to nodes at runtime. These local monitors not only get rid of potential
bottlenecks and reduce the overhead in communication but also introduce an ad-
ditional layer of security as sensitive data can remain local and does not need to
be shared across the network.

To achieve this, we present the following ongoingwork: First, we propose a stream-

19



D3.2 - Monitorable and trustworthy verification loops (Public Document)

based language to express distributed runtime monitors. This language also allows
for the specification of distribution constraints, which define constraints and re-
quirements on the monitors. This can range from minimum or maximum distances,
redundancies, or even the number of monitors per node. Second, we provide a
monitoring framework that allows for the verification of distribution constraints at
runtime using our novel stream-based approach. This ensures continuous moni-
toring of the system. As nodes and respective monitors might fail, choose to leave
the system, or are required by the operator otherwise, our third contribution intro-
duces a self-adaptive scheduler for migrating monitors to nodes. This scheduler
takes into account the distribution constraints as well as the current state of the
system and its individual nodes. Finally, we present a case study to demonstrate
the applicability and feasibility our approach in a multi-robot application focusing
on navigation tasks.

3.3.1 Related Work

Formalisms to describe synchronous systems, such as SIGNAL [BLGJ91], and for-
malisms to specify properties to be monitored of synchronous systems, such as
LTL [Pnu77] and LOLA [DSS+05] have evolved in tandem. In the same fashion,
distributed systems, and their techniques, have driven the need and development
of distributed monitoring. A dedicated scheduling strategy and supporting tools
for the distributed implementation of SIGNAL [MLG94] became the basis for a
plethora of stream-based runtime verification languages such as LOLA.

In the following, we classify the state of the art in the following three axis, defined
in the following subsections: System Under Study; Types of Properties; Monitoring
and Distribution Method.

System Under Study The system under study is the system that is being moni-
tored. In this axis we use the adjective adaptive to refer to systems that can change
their structure and/or behaviour at runtime.

A distributed system is a system that consists of multiple components that are lo-
cated on different networked computers, which communicate and coordinate their
actions by passing messages to one another. Bauer et al. [BF16] present one of the
first algorithms to distribute a Linear Temporal Logic (LTL) formula into subfor-
mulas monitored on different components without a central observer. The local
monitors collaboratively decide satisfaction or violation of a global LTL property.
Mostafa et al. [MB15] employs a three-valued semantics for LTL (true/false/unknown)
to handle partial knowledge at each monitor until enough information arrives. The
approach ensures that even without a global clock, monitors can collaboratively
detect property satisfaction or violation.

Other works consider the spatial location of the components in the system. Exam-
ple works, in the category of spatially distributed systems, are [BBLN] that intro-
duces STREL (Spatio-Temporal Reach and Escape Logic), a novel logic designed
to specify andmonitor spatio-temporal properties of mobile and distributed cyber-
physical systems (CPS).

Ganguly et al. [GXJ+22] leverages Metric Temporal Logic (MTL) in partially syn-

20



D3.2 - Monitorable and trustworthy verification loops (Public Document)

chronous distributed systems. The authors introduce a progression-based formula
rewriting technique: each MTL formula is progressively evaluated over time and
reduced to simpler formulas, with checks delegated to an SMT solver. This ap-
proach yields a generalized distributed RV algorithm for time-sensitive properties.
Yan et al. [YJ22] defines a Swarm Signal Temporal Logic (SwarmSTL) for proper-
ties of robot swarms, and develops a decentralized monitoring framework. Each
robot runs a local monitor that evaluates the SwarmSTL formula relative to its own
observations and those received via consensus from neighbors.

Types of Properties Another axis of our classification is the type of properties that
are monitored. The most common properties are temporal properties, such as LTL
(as implemented in [CF16]), STL (as implemented in Bonakdarpour et al. [BMNS25]),
and MTL (implemented in Ganguly et al. [GXJ+22]), which are used to specify the
behavior of systems over time. However, there are also other types of properties
that are subsets of temporal languages such as PT-DTL (subset of LTL focused on
safety), introduced in Sen et al. [SVAR04], and languages that give more control
over what to monitor and the distribution of the monitors, such as LOLA [DS19].
[DS19] introduces a formal model including routing, lazy vs. eager communication
strategies, and a novel monitorability condition called decentralized efficient mon-
itorability, ensuring bounded memory use regardless of input trace length. The
authors also provide correctness proofs, complexity bounds, and a prototype im-
plementation, dLola, which they evaluate empirically.

Instead of implementing a new language to specify properties to be monitored,
Henry et al. [HJMR25] leverages existing automata formalisms which have accept-
ing states for properties that are violated or accepted. They focuses on real-time
systems and considers properties specified as reachability conditions on timed au-
tomata in a distributed setting. The algorithm dynamically updates the set of pos-
sible states of the timed automaton as new events arrive, and computes verdicts
as soon as they become conclusive.

Monitoring and Distribution Method It is important to distinguish works that fo-
cus on the monitoring of a system under study that is distributed, from works that
distribute the monitor itself and “break” it into sub-monitors that are deployed
along the distributed system under study components. Most of the works in the
state of the art focus on decentralized monitoring, where the monitors are dis-
tributed along the components of the system under study. For instance, Audrito
et al. [ADS+22] explores branching temporal logic in a distributed context, intro-
ducing past-CTL. Monitors for past-CTL formulas are automatically derived and
deployed on each device in a network of IoT-like distributed nodes. The collective
behavior of these monitors, coordinated through a novel use of the field calculus
(an aggregate computing paradigm), ensures the property is checked across space
and time without any central coordinator.

Within the decentralized monitoring category, we can distinguish manual distribu-
tion from automatic distribution. For instance, the work of Audrito, Colombo, and
Yan, et al. [ADS+22, CF16, YJ22] are automated.

Finally, we have found no research publications that perform adaptive distribution,

21



D3.2 - Monitorable and trustworthy verification loops (Public Document)

whereby monitors can migrate from one component to another, or change their
distribution strategy at runtime. This is a key feature of our approach, and we
believe it is a promising direction for future research.

Summary and Comparison with our Work Table 1 summarizes the state of the
art in distributed runtime verification, highlighting the system under study, types
of properties, monitoring method, and distribution method, as introduced above.
Our work, driven by the need to monitor distributed adaptive systems, is unique in
its focus on adaptive distributed runtime verification, where monitors can migrate
and adapt their distribution strategy at runtime.

3.4 Planned Case Study

Inspired upon PAL’s use case, we consider a scenario involving a team of N au-
tonomous mobile robots operating in a static, enclosed environment. Each robot
is initialized in one of the corners in the environment, and is assigned a continuous
patrolling task (depicted in Figure 6).

Figure 6: Four robots initialized in Gazebo to perform a patrolling task. The dashed
green line indicates the path to be followed, whereas the magenta arrows the di-
rection of movement.

Despite robots having the same navigation objectives, and assuming that they
are of the same type, there can still be variability in their behaviour, as a result
of network delays coupled with race conditions within the navigation stacks. In
addition, motor and more generally hardware imperfections, can lead to different
speeds achieved by the robots. Over time, this leads to desynchronization, where
faster robots gradually catch up to slower ones, increasing the risk of unsafe situa-
tions, and even collisions. Due to the complexity of the underlying kinematic, con-

22



D3.2 - Monitorable and trustworthy verification loops (Public Document)

Table 1: Overview of monitoring approaches in distributed systems. The asterisk (*)
indicates that the specification language is originally introduced in the reference.
The last row shows our work.

Paper System Under Study Types of Prop-
erties

Monitoring
Method

Distribution
Method

[SVAR04] Distributed Software
System

PT-DTL* Decentralized Manual

[SS14] Distributed Software
System

PT-DTL Decentralized Manual

[MB15] Distributed Software
System

LTL Decentralized Manual

[BF16] Distributed System LTL Decentralized Manual

[CF16] Distributed System LTL Decentralized Automated

[DS19] Distributed Systems
(Synchronous)

Lola Decentralized Manual

[BBLN] Spatially Distributed
Systems

STREL* Centralized N/A

[GXJ+22] Blockchain smart
contracts

MTL Centralized N/A

[ADS+22] Distributed Systems
(Homogeneous)

past-CTL* Decentralized Automated

[YJ22] Adaptive Kinematic
Robot Swarms

SwarmSTL* Decentralized Automated

[MAB23] Distributed System STL (3-valued) Centralized N/A

[BMNS25] Distributed System STL Centralized N/A

[HJMR25] Distributed System Reachability
timed automata

Decentralized Manual

Our Work Adaptive Distributed
System

Lola + distribu-
tion

Decentralized,
Dynamic

Automated,
Adaptive

23



D3.2 - Monitorable and trustworthy verification loops (Public Document)

trol models, and inherent uncertainty of real world environments, using traditional
methods to verify properties regarding safe distances and collision avoidance be-
comes infeasible. Instead, a distributed monitoring approach would be preferable,
where monitors are deployed on the individual robots, enabling the latter to keep
track of relevant properties such as safety distances to nearby robots. Moreover,
these monitors can be updated at runtime depending on the context, e.g., if a robot
enters a room with elderly people, it could be desired to maintain a higher safety
distance, which can be reverted to a default lower one, once the robot leaves the
room. Distributing the monitors would help in identifying possible issues early on,
as the same property is monitored by several robots. Consider robots A and B
operating near each other. Both A and B will monitor the distance between them
dAB . Inconsistent values for dAB – bigger than an expected error1 – will indicate po-
tential issues with either A or B, triggering mechanisms for identifying which robot
is the source of the problem. Note that, we focus on safety distance, as opposed
to collisions, because should the safety distance be violated, there is still time for
the system to enter a safe state (e.g., all robots nearby are instructed to slow down
or stop).

To reflect realistic deployment conditions, each robot operates based solely on in-
formation obtainable through its onboard sensors, such as cameras or lidar, and a
preloaded reference map of the environment. This includes knowledge of its own
position and the ability to detect nearby robots within a limited visibility range.
Crucially, no robot has access to the global state of the entire system; acquiring
and maintaining such information would be both bandwidth-intensive and compu-
tationally impractical in a distributed setting. As a result, the monitoring approach
must be inherently decentralized, relying only on local observations and partial,
spatially bounded knowledge of the environment.

We are implementing this scenario in a multi-robot simulation built on ROS2 and
the Nav2 stack, with Gazebo as the underlying physics simulator. The environment
spawns N TurtleBot3 robots, each equipped with an individual navigation stack
operating in localisation mode. A static occupancy map is provided beforehand,
removing the need for online mapping.

1There will always be some error, due to for example different accuracies of the distance mea-
surement sensors. We assume in this paper that the bounds of this error are known or have been
estimated before deployment.

24



D3.2 - Monitorable and trustworthy verification loops (Public Document)

4 Preliminary Integration of Trustworthiness Checkers

While the previous section covered the preliminary implementation of the TC, with
a particular focus on its functionalities, in this section we cover the integration of it
with the industrial-sized different case studies.

In this section, we formalize the static and dynamic properties that are monitored
by the TC in the different case studies. We first cover traditional static proper-
ties, and then we cover dynamic ones. These come from the case studies, in D4.1
[HHHL+24], and the requirements presented in D3.1 [GIK+24].

4.1 Robotic laptop refurbishment case from DTI

This case study consists of a robotic cell that is removing stickers from laptop cases
and unscrewing the laptop screen. The stickers are removed by scraping them off
with a plastic scraper. They are supposed to be lifted by the plastic scraper and
the robot needs to identify the edges of the sticker. For this task it uses machine
learning to identify the boundaries of the sticker with the help of a camera.

One of the requirements of the robot’s motion is that it should not go beyond the
detected boundaries of the sticker. Doing so would potentially collide with nearby
objects or people. Formally this static property is expressed as:

(calcPos(pose) < sAreaUpper + δ) ∧ (calcPos(pose) > sAreaLower − δ)

where:

• pose is the position and orientation of the robot

• calcPos is a function calculating the position of the robot relative to the sticker

• sAreaUpper and sAreaLower are the upper and lower areas of the sticker

• δ is a small tolerance value

• < holds if both the x- and y-values of the left-hand side are less than those of
the right-hand side

Another requirement focuses on the unscrew operation of the robot. Here, we
wish to ensure that an acceleration limit is not exceeded, but leave this rule open
for special cases, e.g., when the robot has failed to unscrew the screw and is trying
again. This is a dynamic property that can be expressed as:

α < screw_limit ∨ dynamic(new_rules)

where:

• α is the current angular acceleration of the screwing tool measured at the
robot

• screw_limit is the acceleration limit for a typical unscrewing operation

25



D3.2 - Monitorable and trustworthy verification loops (Public Document)

• dynamic(new_rules) is a function that evaluates if new rules are in place that
allow for a higher acceleration to be applied.

This property can be further reformulated enforce that new rules can only be ap-
plied if an attempt has failed. Such formulation looks like:

α < screw_limit ∨ (dynamic(new_rules) ∧ failed_attempt)

where:

• failed_attempt is a Boolean variable that indicates if an attempt to unscrew
the screw has failed.

4.2 The Robot Navigation Case from PAL Robotics

This case study consists of a robot that is moving in an environment that is shared
with other humans.

One of the requirements that is immutable and therefore specified as a static prop-
erty is that the stopping distance of the robot should always be smaller than the
distance kept to nearby obstacles or humans.

d− SO > 0 ⇒ vR ≤ d− SO

T
− vO

where:

• d is the distance to the obstacle or human

• SO is the stopping distance of the robot

• vR is the velocity of the robot

• T is the robot response time

• vO is the approaching speed of the obstacle or human in relation to the robot.

An example of a dynamic property for this case study is that the robot should
only accept goals if it has enough battery or during emergencies. For instance if
the robot does not have enough battery but it is blocking a crucial passage way
then it should accept goals to move elsewhere. Formally this dynamic property is
specified as:

goalAccepted ⇒ (battery > 30% ∨ dynamic(emergency))

where:

• goalAccepted is a Boolean variable that indicates if the robot has accepted a
goal

• battery is the current battery level of the robot

• dynamic(emergency) is a function that allows accepting new emergency rules

Similarly to the laptop refurbishment case, the property can be reformulated to
enforce that new rules can only be specified during emergencies.

26



D3.2 - Monitorable and trustworthy verification loops (Public Document)

4.3 Ship Motion Prediction Case from NTNU

This case study consists of moving ship that is making use of a predictive model of
the shifts dynamics for future motion planning. A predictive model can be dynami-
cally reconfigured or swapped by a presumably better predictive model. The focus
is on the performance of the predictive models, in particular, its accuracy.

An example of static requirement in this case study is that whenever a planning
occurs then it must always translate to a new predictive model:

phase = P ⇒ model ̸= default(model[−1], ”BasicModel”)

where:

• phase is the current phase of the ship.

• P is the planning phase.

• model is the current predictive model.

• model[−1] is the previous predictive model.

• default(model[−1], ”BasicModel”) uses a basic model initially when no prior
model is available.

One dynamic requirement is that the model accuracy must be above a threshold,
and can potentially be made stricter2 based on new knowledge from the MAPLE-K
loop or a human:

acc > δ ∧ defer(new_acc)

where:

• acc is the accuracy of the model.

• δ is a small tolerance value.

• defer(new_acc) is a function that allows introducing a new stricter accuracy
threshold.

4.4 Dynamic Risk Model Case Study from Fraunhofer IFF

This case study consists of a robotic manipulator operating on a cell. Contrary to
the case study from DTI, here the focus is on dynamically adapting the risk assess-
ment model of collision of the robot with nearby humans with the help of tracking
the position and pose of those humans using a multi camera vision system.

Because the vision system is using machine learning one static property is that
human “teleportation” should never occur:

abs(humPos,humPos[−1]) < timeBetween(humPos,humPos[−1]) · δ

where:

• humPos denotes the current centroid position of the human.

2Note that if a less strict threshold is provided, the original threshold dominates the expression

27



D3.2 - Monitorable and trustworthy verification loops (Public Document)

• humPos[−1] is the previous centroid position of the human.

• timeBetween(humPos,humPos[−1]) is the time between the two positions.

• δ is a small tolerance value, relating to how fast the average human can move
in that workspace.

The dynamic property below demonstrates how Dynamic Risk Models integrate
seamlessly into the TC. The property states that when the robot arm is active, the
quantified risk must be below a predefined threshold. Initially, this risk is estimated
using a simple model based on the robot arm’s speed and distance to the human.
As more information becomes available, the model can be refined based on in-
formation from the MAPLE-K loop or a human expert. Formally, this is expressed
as:

baseModel = −armSpeed · humanDistance

calcRisk = update(baseModel,dynamic(riskModel))

armOn ⇒ calcRisk < riskThreshold

where:

• baseModel is the base model of the risk assessment.

• armSpeed is the speed of the robot arm.

• humanDistance is the distance to the human.

• calcRisk is the calculated risk.

• update(baseModel,eval(riskModel)) is a function that updates the base model
to a more detailed model.

• armOn is a Boolean variable that indicates if the robot arm is on.

• riskThreshold is the risk threshold.

28



D3.2 - Monitorable and trustworthy verification loops (Public Document)

5 Conclusion

Section 1 presented the findings of the carried out survey of the state of the art of
MAPE-K loops. These results expand the findings reported in D3.1 [GIK+24] and
together form the basis for the extension and development of the RoboSAPIENS
MAPLE-K loop, as well as the most challenging aspects of the thurstworthiness
checker. As as a result, section 3 introduces the ongoing work in dynamic prop-
erty monitoring and distributed monitoring have been introduced as monitoring
implementations for the RoboSAPIENS trustworthiness checkers.

Section 4 shows, how this monitoring for Trustworthiness checkers can be inte-
grated in the four different RoboSAPIENS case studies. Specific properties were
therefore developed together with the case studies.

Next steps in work package 3 will focus on the synthesis of verified trustworthiness
checkers (task T3.3) and further preparation of integrating trustworthiness check-
ers into the case studies, through the RoboSAPIENS adaptative platform (task T3.4
and WP5).

29



D3.2 - Monitorable and trustworthy verification loops (Public Document)

References
[ADS+22] Giorgio Audrito, Ferruccio Damiani, Volker Stolz, Gianluca Torta, and

Mirko Viroli. Distributed runtime verification by past-CTL and the field
calculus. Journal of Systems and Software, 187:111251, May 2022.

[ANM24] Bert Van Acker, Sahar Nasimi Nezhad, and Paul De Meulenaere. Ini-
tial architecture for the RoboSAPIENS platform. Technical report, Ro-
boSAPIENS Deliverable, D5.1, September 2024.

[BBLN] Ezio Bartocci, Luca Bortolussi, Michele Loreti, and Laura Nenzi.
Monitoring Mobile and Spatially Distributed Cyber-Physical Systems.
In Proceedings of the 15th ACM-IEEE International Conference on
Formal Methods and Models for System Design, pages 146–155. RV
specifically for spatially distributed systems.

[BF16] Andreas Bauer and Yliès Falcone. Decentralised LTL monitoring.
Formal Methods in System Design, 48(1):46–93, April 2016.

[BFFR18] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. In-
troduction to runtime verification. Lectures on Runtime Verification:
Introductory and Advanced Topics, pages 1–33, 2018.

[BLGJ91] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Syn-
chronous programming with events and relations: The SIGNAL
language and its semantics. Science of Computer Programming,
16(2):103–149, September 1991.

[BMNS25] Borzoo Bonakdarpour, AnikMomtaz, Dejan Nic�kovic�, andN. Ege Saraç.
Approximate Distributed Monitoring Under Partial Synchrony: Balanc-
ing Speed & Accuracy. In Erika Ábrahám and Houssam Abbas, edi-
tors, Runtime Verification, pages 282–301, Cham, 2025. Springer Na-
ture Switzerland.

[CF16] Christian Colombo and Yliès Falcone. Organising LTL monitors over
distributed systems with a global clock. Formal Methods in System
Design, 49(1):109–158, October 2016.

[DS19] Luis Miguel Danielsson and César Sánchez. Decentralized Stream Run-
time Verification. In Bernd Finkbeiner and Leonardo Mariani, editors,
Runtime Verification, pages 185–201, Cham, 2019. Springer Interna-
tional Publishing.

[DSS+05] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson,
B. Finkbeiner, H.B. Sipma, S. Mehrotra, and Z. Manna. LOLA: Runtime
monitoring of synchronous systems. In 12th International Symposium
on Temporal Representation and Reasoning (TIME’05), pages 166–174,
June 2005.

[GIK+24] Claudio Gomes, Carlos Isasa, Morten Haahr Kristensen, Thomas M.
Roehr, and MORE. Requirements for safe and trustworthy MAPE-K
loops. Technical report, RoboSAPIENS Deliverable, D3.1, September
2024.

30



D3.2 - Monitorable and trustworthy verification loops (Public Document)

[GXJ+22] Ritam Ganguly, Yingjie Xue, Aaron Jonckheere, Parker Ljung, Ben-
jamin Schornstein, Borzoo Bonakdarpour, and Maurice Herlihy. Dis-
tributed Runtime Verification of Metric Temporal Properties for Cross-
Chain Protocols. In 2022 IEEE 42nd International Conference on
Distributed Computing Systems (ICDCS), pages 23–33, July 2022.

[HHHL+24] Cathrine Hasse, Stephan Holmberg-Hansen, Ane Nykjær Lemvik,
Houxiang Zhang, Guoyuan Li, Mikkel Labori Olsen, Robert Scharping,
and Thomas Peyrucains. Case study compendium. Technical report,
RoboSAPIENS Deliverable, D4.1, June 2024.

[HJMR25] Léo Henry, Thierry Jéron, Nicolas Markey, and Victor Roussanaly. Dis-
tributed Monitoring of Timed Properties. In Erika Ábrahám and Hous-
sam Abbas, editors, Runtime Verification, pages 243–261, Cham, 2025.
Springer Nature Switzerland.

[KWG+25] Morten Haahr Kristensen, Thomas Wright, Cláudio Gomes, Lukas Es-
terle, and Peter Gorm Larsen. Dynsrv: Dynamically updated properties
for stream runtime verification. In Runtime Verification. Springer Na-
ture, 2025.

[MAB23] Anik Momtaz, Houssam Abbas, and Borzoo Bonakdarpour. Moni-
toring Signal Temporal Logic in Distributed Cyber-physical Systems.
In Proceedings of the ACM/IEEE 14th International Conference on
Cyber-Physical Systems (with CPS-IoT Week 2023), ICCPS ’23, pages
154–165, New York, NY, USA, May 2023. Association for Computing
Machinery.

[MB15] Menna Mostafa and Borzoo Bonakdarpour. Decentralized Runtime
Verification of LTL Specifications in Distributed Systems. In 2015
IEEE International Parallel and Distributed Processing Symposium,
pages 494–503, May 2015.

[MLG94] Olivier Maffeïs and Paul Le Guernic. Distributed implementation of SIG-
NAL: Scheduling & graph clustering. In Hans Langmaack, Willem-Paul
de Roever, and Jan Vytopil, editors, Formal Techniques in Real-Time
and Fault-Tolerant Systems, pages 547–566, Berlin, Heidelberg, 1994.
Springer.

[PFJM14] Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, and Hervé Marchand.
Runtime enforcement of regular timed properties. In Proceedings of
the 29th Annual ACM Symposium on Applied Computing, SAC ’14,
page 1279–1286, New York, NY, USA, 2014. Association for Comput-
ing Machinery.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science (SFCS 1977), pages
46–57, 1977.

[SS14] Torben Scheffel and Malte Schmitz. Three-valued asynchronous dis-
tributed runtime verification. In 2014 Twelfth ACM/IEEE Conference
on Formal Methods and Models for Codesign (MEMOCODE), pages
52–61, October 2014.

31



D3.2 - Monitorable and trustworthy verification loops (Public Document)

[SVAR04] K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient decentral-
ized monitoring of safety in distributed systems. In Proceedings.
26th International Conference on Software Engineering, pages 418–
427, May 2004.

[YJ22] Ruixuan Yan and Agung Julius. Distributed Consensus-Based Online
Monitoring of Robot SwarmsWith Temporal Logic Specifications. IEEE
Robotics and Automation Letters, 7(4):9413–9420, October 2022.

[ZC06] Ji Zhang and Betty H. C. Cheng. Using temporal logic to specify adap-
tive program semantics. Journal of Systems and Software, 79(10):1361–
1369, October 2006.

32



D3.2 - Monitorable and trustworthy verification loops (Public Document)

A Appendix

A.1 State of the Art of the MAPE-K Loop: Architecture, Implemen-
tation and Verification

The appended paper follows.

33



State of the Art of the MAPE-K Loop: Architecture,
Implementation and Verification
CARLOS ISASA, Aarhus University, Denmark
ZIGGY ATTALA, University of York, United Kingdom
MORTEN H. KRISTENSEN, Aarhus University, Denmark
SAHAR NASIMI NEZHAD, University of Antwerp, Belgium
THOMAS M. ROEHR, Simula Research Laboratory, Norway
ROBERT SCHARPING, Fraunhofer Institute for Factory Operation and Automation IFF, Germany
PAVLOS TOSIDIS, Aristotle University of Thessaloniki, Greece
THOMAS WRIGHT, Aarhus University, Denmark
CLAUDIO GOMES, Aarhus University, Denmark
VASILEIOS MOUSTAKIDIS, Aristotle University of Thessaloniki, Greece
THEODOROS MANOUSIS, Aristotle University of Thessaloniki, Greece
LUKAS ESTERLE, Aarhus University, Denmark
ANA CAVALCANTI, University of York, United Kingdom
PETER GORM LARSEN, Aarhus University, Denmark

Adding autonomy to systems is at the core of the transformation that industry is currently undertaking,
with human interaction being taken out of the loop whenever possible. It is important that this revolution
is carried out safely for humans and all elements of the environment in which the autonomous systems
operate. So, for such systems to adapt to unexpected circumstances, a systematic approach to safety is needed.
The most well-known architectural pattern for adaptation is the MAPE-K loop. This survey reports on a
systematic review of more than 300 publications about MAPE-K. Our main contributions are (1) an analysis of
the alternative architectural patterns and extensions of MAPE-K; (2) a categorisation of the alternative design
approaches for each of the MAPE-K phases; and (3) an analysis of the different approaches taken to ensure
that the MAPE-K autonomy is safe and thus can be trusted. We further identify research gaps and provide a
roadmap for future research to enable safe self-adaptation in autonomous systems of the future.

Authors’ addresses: Carlos Isasa, Aarhus University, Aarhus, Denmark, cisasa@ece.au.dk; Ziggy Attala, University of York,
York, United Kingdom, ziggy.attala@york.ac.uk; Morten H. Kristensen, Aarhus University, Aarhus, Denmark, mhk@ece.au.
dk; Sahar Nasimi Nezhad, University of Antwerp, Antwerp, Belgium, sahar.nasiminezhad@uantwerpen.be; ThomasM. Roehr,
Simula Research Laboratory, Oslo, Norway, roehr@simula.no; Robert Scharping, Fraunhofer Institute for Factory Operation
and Automation IFF, Magdeburg, Germany, robert.scharping@iff.fraunhofer.de; Pavlos Tosidis, Aristotle University of
Thessaloniki, Thessaloniki, Greece, ptosidis@csd.auth.gr; Thomas Wright, Aarhus University, Aarhus, Denmark, thomas.
wright@ece.au.dk; Claudio Gomes, Aarhus University, Aarhus, Denmark, claudio.gomes@ece.au.dk; Vasileios Moustakidis,
Aristotle University of Thessaloniki, Thessaloniki, Greece, vmousta@csd.auth.gr; Theodoros Manousis, Aristotle University
of Thessaloniki, Thessaloniki, Greece, thodorisman@gmail.com; Lukas Esterle, Aarhus University, Aarhus, Denmark,
lukas.esterle@ece.au.dk; Ana Cavalcanti, University of York, York, United Kingdom, ana.cavalcanti@york.ac.uk; Peter Gorm
Larsen, Aarhus University, Aarhus, Denmark, pgl@ece.au.dk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2025/6-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: June 2025.



2 Isasa, et al.

ACM Reference Format:
Carlos Isasa, Ziggy Attala, Morten H. Kristensen, Sahar Nasimi Nezhad, Thomas M. Roehr, Robert Scharping,
Pavlos Tosidis, ThomasWright, Claudio Gomes, VasileiosMoustakidis, TheodorosManousis, Lukas Esterle, Ana
Cavalcanti, and Peter Gorm Larsen. 2025. State of the Art of the MAPE-K Loop: Architecture, Implementation
and Verification. 1, 1 (June 2025), 35 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Autonomous systems can adapt to changes in their environment without human involvement.
Governed by autonomous software agents, these systems can be employed in a wide range of
applications, even in collaboration with humans, with the potential of transforming society at
large. Over the past 40 years, various architectures have been proposed to enable engineered
systems to adapt to their dynamically changing environments. Some examples are the subsumption
architecture [35], BDI agents [143], or the LRA-M loop [104].
Our focus in this paper is a leading architectural pattern called the MAPE-K loop [94]. It is

characterised by components to Monitor, Analyse, Plan and Execute over shared Knowledge, to
govern all kinds of computational systems and adapt its actions, resources and goals at runtime.
With a history of over 20 years, MAPE-K has been applied in a wide range of applications.

A MAPE-K loop is typically associated with a managed system. Yet, the type of managed system
varies greatly, ranging from distributed systems, such as cloud-based solutions, down to a very
narrowly scoped subsystem. Deud Guimarães and De Almeida Neris [56] show that even a human
or rather the human-state can be a target of control. In their work, the emotional state of the
user, which is influenced by the changing presentation of a user interface, is controlled. Table 1
summarises the main application domains in the literature. In some areas of application, such as
robotics, authors do not focus on describing MAPE-K aspects or compatibility of their software
design. Yet, feedback-control loops, widely used in robotics and other areas, can be seen as an
application of a semantically equivalent concept (cf. Rutten et al. [146]).

Due to the vast research on self-adaptive and autonomous systems, and on MAPE-K specifically,
there are numerous surveys reviewing specific areas covering this topic. We can cite, for exam-
ple, architecture-based self-adaptation [164], machine learning in self-adaptive systems [79], and
decentralised adaptation using the MAPE-K loop [141]. However, with the ability of a system to
adapt to a changing environment, protection of humans and other elements of the environment
becomes a concern. A comprehensive survey of the MAPE-K loop and its individual components
with a dedicated focus on ensuring safety in adaptation processes is currently missing.

This article fills this gap by offering the following contributions.
(1) We present a comprehensive overview of research and work on the MAPE-K loop by system-

atically surveying more than 300 publications.
(2) We provide insights on different implementations of each of the MAPE-K components, and

highlight the requeriments of each implementation technique. This provides practitioners
with a valuable overview of existing implementations and approaches, and the required and
desired boundaries they impose on a system that adopts them.

(3) We cover the approaches for verification of adaptions of an autonomous system governed
by a software agent implemented using a MAPE-K framework. We present an overview of
available techniques and application-specific implementations.

(4) We outline a roadmap for future research to bridge current research gaps, combining adapta-
tion and safety for trustworthy self-adaptation in future autonomous systems.

The structure of the paper is as follows. Section 2 explains the methodology followed in this survey
together with the research questions we present. Section 3 introduces the MAPE-K architecture
and covers different alternative approaches of MAPE-K realisations in regard to design, integration,

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 3

Table 1. Application domains of MAPE-K control loops

Domain References

cloud / provisioning, networks [1, 43, 50, 114, 119, 121, 123, 169]
workflow, compute optimization IoT, industry 4.0, production sys-
tems

[26, 28, 52, 106],

CPS control loop, robotics, greenhouse control [44, 58, 72]
smart city: traffic management, health management [7, 27]
architecture (adaption, e.g., Service Oriented Architecture) [11, 133]
security, monitoring: security source, application-layer attacks,
network

[17, 20, 63]

business process management [83, 147, 150]
monitor service level agreements [43]

and further properties. Afterwards, Section 4 presents the main findings regarding the alternative
patterns of the different stages of MAPE-K. This is followed by Section 5 examining the surveyed
publications for verifying the trustworthiness of the MAPE-K loops. In Section 6, we return to all
the research questions, and we discuss gaps in the literature that could be addressed in the future.
We conclude in Section 7, where we summarise and give pointers for future work.

2 METHODOLOGY
Our study follows the three macro-phases of systematic mapping studies defined in the litera-
ture [99], namely, planning, conducting, and reporting. Figure 1 describes the design of our study,
which has five phases numbered 1 to 5. Phase 1 is planning; Phases 2–4 correspond to the conducting
macro-phase, and finally Phase 5 corresponds to reporting.

Phase 5: ReportingPhase 4: Data synthesisPhase 3: Data Extraction

Phase 2: Search and SelectionPhase 1: Planning

Review needs
identification

Goal and RQs
definition

Protocol
definition

Protocol

Evaluator
SCOPUS

Keyword
search

keywords: mape-k OR (self-
adaptive AND mape)

374 studies

Study
selection/inclusion/exclusion

Consensus Exclusion

337 studies

Snowballing

Thematic
analysis

Meta-
Classification

Answers to
RQs

Writing

Final
Classification

Replication Package
Preparation

Content
analysis

Narrative
synthesis

Manuscript Replication
Package

Workflow

Input/Output

Fig. 1. Study Design. Adapted from [12].

, Vol. 1, No. 1, Article . Publication date: June 2025.



4 Isasa, et al.

Table 2. ResearchQuestions

RQ1 What possible ways are there to implement the M/A/P/E/K component of the MAPE-
K loop and how can they be classified?

RQ2 Under what conditions are each of the main implementation techniques for MAPE-K
phases suitable?

RQ3 What are the existing verification approaches in the literature?

RQ4 How are the different implementations of the MAPE-K phases related?

RQ5 What are the most common architectural patterns and properties for MAPE-K loops?

Phase 1 started by identifying gaps within the existing surveys, namely, topics that are not the
target of a systematic and exhaustive review of papers related to the MAPE-K loop and need to be
covered. Phase 1 then proceeded with the definition of our goals and Research Questions (RQs).
These tasks were all supported by an evaluator not in the core group, that is the group of authors
in charge of reading and classifying the papers. The outcome of Phase 1 was a research protocol,
defining the study’s context, goals, and RQs listed in Table 2. The protocol underwent internal
evaluation by co-authors experienced in systematic studies. Feedback from this evaluation was
used to refine the protocol, addressing identified threats to validity.
Phase 2 aimed to identify primary studies relevant to, or concerned with, MAPE-K loops in

self-adaptive systems. First, a keyword-based search was conducted. The database of choice was
Scopus and the search string was TITLE-ABS-KEY (mape-k) OR (self-adaptation AND mape).
Other inclusion criteria were studies written in English and published in journals and conference
proceedings in the fields of computer science or engineering. In this way, 374 studies were found.

Exclusion decisions were then carried out by consensus among the authors. This process removed
studies not explicitly addressing MAPE-K loops, such as those that only make high-level references
to MAPE-K (for instance, [34]) or position papers about the use of MAPE-K loops in unrelated
disciplines (for instance, [160]). The paper count after this step was 293.

Finally, snowballing was conducted to supplement the initial search, resulting in 54 more studies
cited by and citing the primary studies identified. This process was done by checking both the
references and the citations of papers with more than 20 citations. Finally, an additional criteria
excluded papers published before 2010 to maintain a dataset that was both manageable and still
relevant. In total 337 studies were included in the final dataset used for data extraction and synthesis.

Phase 3 aimed at collecting information from each paper relevant to the research questions, such
as implementation details, extensions, and verification approaches. Based on the topics presented,
a thematic analysis led to the meta-classification of verification, implementation and architectural
extension papers. This early meta-classification is the output of this phase.
Phase 4 consisted of content analysis and narrative synthesis. First, in the content-analysis

step, the papers were read and taxonomies for the different meta-classes were developed. Next, in
the narrative-synthesis step, quantitative and qualitative techniques were used to identify trends,
patterns, and gaps in the literature. Findings were mapped to the research questions, providing
answers with actionable insights for practitioners and researchers.
Finally, in Phase 5 the results were then compiled into the current manuscript, detailing the

methodology, findings, and implications. A replication package, including the extracted data, has
been made publicly available to ensure transparency and reproducibility.

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 5

Monitor
Know-
ledge

Analyse Pl
an

Execute

Autonomic manager

 (MAPE-K Loop)

Control Software

Managed System (e.g. Robot)

(a)MAPE-K loop in an autonomic
element (adapted from [107])

(b) IBM Reference Architecture - Source: [85]

Fig. 2. The MAPE-K reference architecture and its phases.

Threats to Validity. Potential biases, such as language and keyword-selection biases, were mitigated
by iterative refinement of the search strategy and snowballing. For instance, snowballing revealed
54 papers that were about MAPE-K but did not include the keywords of the search formulated in
the title, abstract, or keywords. Regular meetings of the authors for sharing and reviewing results
minimized subjective biases during all phases. The dynamic nature of the field, with an increasing
number of publications, poses a threat to capturing all relevant studies. Snowballing and periodic
reviews of classification criteria addressed this issue. All records were maintained for transparency.

3 ARCHITECTURE FOR MAPE-K SYSTEMS
Traditional control systems (along with their more sophisticated supervisory (layered) [117] and
model-based [84] extensions) can be considered as already providing support for self-adaptive
behaviour. However, their space of adaptations is carefully controlled and restricted at design time.
In contrast, the MAPE-K loop, depicted in Fig. 2a, is a well-recognized engineering approach [22]
for structuring software in self-adaptive systems. Fig. 2a shows an autonomic element, that is, an
individual system containing resources and delivering services to humans and other autonomic
elements. Each autonomic element includes a managed component, described as a Managed
System (Robot) in Fig. 2a, and an Autonomic manager. There are various approaches to implement
a MAPE-K control loop. In this section, we therefore give an overview of the structure of existing
system architectures that take advantage of one or more MAPE-K control loops.

In Section 3.1, we describe the default MAPE-K control loop, and analyse the standard approach to
its implementationwith respect to the original proposal by IBM [85]. (Design of the individual phases
is discussed in Section 4.) Due to the lack of a strict specification, researchers and practitioners have
come up with several interpretations of MAPE-K-based control loops. Hence, Section 3.2 presents
a variety of ways in which MAPE-K loops are designed and built into larger architectures. This
includes, for instance, approaches where MAPE-K loops define an overall system architecture, and

, Vol. 1, No. 1, Article . Publication date: June 2025.



6 Isasa, et al.

where multiple control loops interact and take advantage of additional functional layers. In doing
so, we describe typical implementation patterns for MAPE-K based architectures. Subsequently, we
discuss architectures that extend the phases of the MAPE-K loop in Section 3.3. Section 3.4 gives an
overview of architectural properties, and Section 3.5 concludes with implementation frameworks.

3.1 Control-loop design
The basic layout of the MAPE-K loop has originally been proposed by Kephart and David M.
Chess [94], and detailed in a whitepaper [85]. Those works list the four phases and the knowledge
component, but give only loose descriptions thereof, quoted below.

• Monitor: “collect, aggregate, filter and report details (such as metrics and topologies) collected
from a managed resource” - it performs these activities “until it determines a symptom that
needs to be analysed”.

• Analyse: “correlate and model complex situations [...] to learn about the IT environment and
help predict future situations” - the main purpose of this component is “to determine if some
change needs to be made”.

• Plan: “construct actions needed to achieve goals and objectives [..., using] policy information
to guide its work”.

• Execute: “control the execution of a plan with consideration for dynamic updates”.
The authors indicate that all phases take advantage of a knowledge component, that allows storage
and access to data. The term data is used by the authors in a very abstract sense, so that the detailed
methods of storing and accessing it remain unspecific. Likewise, other phases of the MAPE-K loop
are also not strictly specified, and moreover, the authors of [85] do not imply a strict monitor-
analyse-plan-execute control flow, and consider also the partial implementation of these phases.
So, implementing only the monitor phase for one subsystem is possible, for example.

The predominant, and thus standard implementation structure of MAPE-K is a single control loop
using the monitor-analyse-plan-execute phases, with examples given by [49, 51, 57, 158, 162, 177].
For these typical MAPE-K implementations, the component structure goes hand-in-hand with the
control flow, where the execution order is: monitor, analyse, plan, and lastly execute.

In the next sections, we cover variations developed over the years.

3.2 Architectural Patterns

Individual MAPE-K phases can be implemented by one or multiple components. The possible
cardinalities are listed below as mappings to the real components.
n:1 all phases are implemented in a single component. This pattern is called monolith (single

program) [51].
n:n each phase has one component as counterpart in the implementation [9, 30].
n:m each phase has one or many (coordinated) components implementing it [11].
Calinescu et al. [39] consider also the redundant implementation of a single phase, which we note
as n:m[+], meaning n:m in 1 or more parallel implementations. Meanwhile, some authors likewise
merge the plan and execute phases [11], or leave out a phase and call the MAPE-K based approach
“lightweight” [31]. Thus, we use n:m[-] to denote merged or absent phases.

As soon as multiple components are used to implement a MAPE-K loop, they can be realised in
a distributed way, with components running on multiple devices. Albassam et al. [11], for instance,
present a distributed MAPE-K architecture, where the monitor is represented as an “Architecture
Discovery Layer”, which communicates detected node failures to a “Configuration Maintenance
Layer”. An “Application Recovery Layer” combines the plan and execute components of a MAPE-K

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 7

loop, and is responsible for recovery of the overall component-based architecture. Overall, the
literature points to multiple patterns: (i) single/monolith with no distribution, since there is only
one component [51]; (ii) single/component-based with a single system with a MAPE-K loop, but
implemented by multiple components [82, 119, 176, 178]; and (iii) distributed/component-based
where MAPE-K runs across multiple systems, implemented by multiple components [7, 11, 27, 122].

The monolith pattern is the most restrictive as it allows no distribution, but a related decom-
position is still possible, e.g., by running phases in separate threads [98]. For the remaining cases
of component-based implementations, complexity increases as soon as a phase requires multiple
components (n:m), and when redundancy is introduced by parallel structures [+].

For the control flow it is important to know how the coordination between phases is done. Most
descriptions of implementations do not detail this aspect, so that the default has to be assumed, that
is, a sequential control flow in which the monitor identifies an anomaly and triggers the analyse
phase, which triggers the plan phase, which finally triggers the execute phase.
Riccio et al. [144] explicitly adopt asynchronous execution of the monitor phase, which then

triggers an adaptation loop, without detailing if a conflicting overlapping execution of an adaptation
loop could be triggered or how it is handled. An important safety-relevant question arising from
this is how anomalies that occur during the handling of another anomaly are handled. Hoffmann
et al. [83] mention at least the unique identification of anomalies, so that redundant triggering of an
analysis from the monitor is prevented. Faraji-Mehmandar et al. [70], on the other hand, describe
the periodic execution of their implemented adaptation loop.
Several works, including the original description of MAPE-K [85], consider architectures that

combine several instances of a MAPE-K loop. The original approach already uses several MAPE-K
loops in the autonomic manager as shown in Fig. 2b. This architecture has five layers. The bottom
layer is defined by resources (servers, databases, and so on) managed through interfaces exposed
via an interface layer named Touchpoint. These interfaces can be used by autonomic managers in
an additional layer named Touchpoint Autonomic Managers.

An autonomic manager can, for instance, perform central coordination of control loops responsi-
ble for self-configuration. Another option is for an autonomic manager to coordinate loops with
diverse responsibilities: self-configuration, self-protection, self-healing, and self-protecting (also re-
ferred to as self-x properties). The authors of [85] refer to the former strategy as “within a discipline”
and the latter as “across discipline”, where discipline refers to one of the self-x properties.

The second layer from the top, calledOrchestrating Autonomic Managers, relies on a hierarchical
setup of MAPE-K loops for orchestration. This is guided by a policy defined by goals and objectives
that a human operator can set. Hence, orchestration does not need to be fully autonomic. Instead,
the top layer of this architecture, Manual Manager, allows a human in the loop.

All layers use common Knowledge Sources for exchange of information.
The use of MAPE-K loops in a hierarchical composition has been suggested by Portocarrero

et al. [137]. This pattern is referred to as “tower of adaptation” [27, 36]: MAPE-K loops can be
stacked in such a way that a MAPE-K loop can act as managing element for a child MAPE-K loop,
while being managed by another parent MAPE-K loop itself.

In many later works, a MAPE-K loop does not define the full architecture of a complex system,
but is itself embedded into an enclosing architecture. Weyns and Iftikhar [165] provide one such
example: the three-layered architecture ActivFORMS. It comprises a “goal management” layer as
interface to external operators, while a “change management” layer comprises all MAPE-K loops.
In this approach, the goal and change management layers form the managing system, and the
“managed system” layer completes the architecture as a third layer.

, Vol. 1, No. 1, Article . Publication date: June 2025.



8 Isasa, et al.

A combination of multi-agent systems with MAPE-K is illustrated by Müller et al. [122], and
Aguilar et al. [7], while Doran et al. [58] merge MAPE-K with IMD (Intelligent Machine Design).
De Benedictis et al. [55] and Feng et al. [72] embed a digital twin in the control loop.
The distribution of a MAPE-K loop can increase the complexity of the control mechanism by

itself, due to the need for additional communication and coordination between the phases. For a
set-up of multiple MAPE-K loops, an additional coordination and synchronization challenge arises,
which Gerostathopoulos et al. [76] address by introducing explicit mechanisms to perform conflict
resolution and multi-layer control. This complexity is handled in parts by hierarchical MAPE-K
loop setups. where one or more MAPE-K loops are controlled by another MAPE-K loop. Such setup
as illustrated by Gerostathopoulos et al. [76] allows, for instance, to activate, deactivate or even
add control strategies - all again encoded by MAPE-K control loops.

The coordination of multiple MAPE-K loops requires communication, and for the communication
flow between multiple MAPE-K loops, we can identify the following connection and responsibility
patterns: (i) sequential, unidirectional, with multiple MAPE-K loops connected, with control of
communication unidirectional; (ii) parallel, bidirectional, with multiple MAPE-K loops running in
parallel and communicating with each other, e.g., to adjust parameters; (iii) parallel, independent,
with multiple MAPE-K loops running, but not influencing each other directly; and (iv) hierarchical,
bidirectional, with multiple MAPE-K loops forming a hierarchical communication structure, where
the parent MAPE-K loops exert more responsibility than any successor loops.

The need for multiple MAPE-K loops and component distribution for federated systems can arise
from performance constraints. In addition, it is useful to maintain modularity of the implementation.

3.3 Architectural Extensions
Some authors have extended the MAPE-K architecture, instead of adapting it to their domain via
different implementation strategies.We can classify the adaptations into two types, each for different
purposes. First, some authors have introduced sub-phases to provide more details regarding the
existing five phases to the MAPE-K loop. For example, the techniques presented by Quin et al. [140]
and Camelo et al. [40] introduce new phases to enable machine learning to be utilised inside
the knowledge components; the intent of these phases is to provide more details regarding the
knowledge component, so they are sub-phases. Second, some authors have introduced phases with
a purpose separate to any of the four existing phases; we refer to these phases as top-level phases.
In this section, we consider only top-level phases, taking the view that sub-phases are used for
supporting the implementation of a MAPE-K loop, not for extending it.

Informative Phases. The first type of top-level phase is one whose results inform, or assist, the
operation of an existing phase by performing other functionality. For example, Karaduman et al. [93]
introduce a Fuzzy Logic Controller phase to help the operation of the execute phase. In this work,
the modified MAPE-K loop is used to specify a BDI (Belief, Desire, Intent) agent [75]. The extra
Fuzzy Logic Controller phase, together with the planning phase, help provide consistent reasoning
about the BDI agent’s beliefs when the environment exhibits uncertainty.
Ali [13] similarly adds a phase that assists with the analysis: the Analytical Framework phase

that obtains data from the analysis component, and then develops models using key performance
indicators, visualization, and machine learning (ML) algorithms to add to the knowledge component.
These models also help the analysis component to determine if there is an anomaly. The Analytical
Framework phase is distinct from a sub-phase of analysis because the Analytical Framework updates
the knowledge with new models, which the analysis phase does not in their technique. Gheibi and
Weyns [78] take a similar approach, they introduce a Verifier phase that updates learning models
in the knowledge component based on the results of the analysis phase.

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 9

Finally, Abdennadher et al. [2] add a Decision phase, connected to the output to each of the
analysis, planning, and execute phases. If any such phase reaches a point where they have a decision
to make, the Decision phase guides the choice based on information about the managed system
obtained at runtime, such as how the tolerance of the hardware to physical changes. Jamshidi
et al. [89] similarly introduce an auto-adjuster phase that receives data from the monitor phase,
and uses this to dynamically update the parameters of all other phases depending on the context.

Recording Phases. There is another type of top-level phase mainly for recording, analysing,
and communicating information about the MAPE-K loop itself, similar to a reflective operation.
Yaghoobirafi and Farahani [170] specify the DisMAPE-K loop, a distributed version of the MAPE-
K loop that enables multiple MAPE-K controllers to interact and work together. For that, the
DisMAPE-K loop has an Entity phase in each MAPE-K loop, whose purpose is to report on its
managed system of this MAPE-K loop to the wider system.
Another type of reflective phase is presented by Annighöfer et al. [21], who add a Virtual

Certification phase. It follows the plan phase, but acts before the execute phase. The Virtual
Certification phase ensures that the software still conforms to pre-defined (aviation) standards, and
ensures the system configuration still conforms to them following adaptation.

Reflexive Action Phase. Liess et al. [111] specify a MAPE-K loop with a single top-level phase
added: the Reflexive Action phase. It receives data from the managed system via the monitor,
and if predefined trigger conditions are met, then the Reflexive Action communicates a course of
action directly to the execute phase, skipping all other phases entirely. These trigger conditions
represent states where immediate adaptation is required, for example when a physical system
may imminently collide with an object. This architecture is designed for real-time and low-latency
environments, where reaction time and liveness properties are critical considerations.

Rule Augmentation Phases. In [100, 101], Verena Klös presents approaches to include new rules
in the plan component of a MAPE-K loop using additional phases. The rules are defined based on
the distance of the system, represented by 𝐾𝑆𝑦𝑠 in the knowledge component, from a goal, captured
by 𝐾𝐺𝑜𝑎𝑙 , a model of that goal in the knowledge component. Another 𝐾𝐴𝑑𝑎𝑝𝑡 component represents
the current adaptation rules, and further aids in the definition of the new rules.

Klös et al. [100] add two top-level phases to the MAPE-K loop: the Learner and Evaluation phases.
Here, the analyse phase decides if the system has strayed too far from its goal. If so, then the Evaluate
phase can either remove rules from the system, or signal the need for further rules via a flag. In
the plan phase, if such a flag has been raised, then, in the Learner phase, a learning component
attempts to learn another rule; if successful, this rule is recorded in the 𝐾𝐴𝑑𝑎𝑝𝑡 component.

In contrast, in [101], instead of the analyse, the monitor phase communicates with the Evaluation
phase, which itself determines if the distance to the goal is too large, and can disable or adjust
rules, as needed. Further, this approach contains a Verification phase, which establishes system
properties considering the new rule. The rule is added only when this verification passes.

3.4 Architectural Properties
Software architectures can come with different properties to ensure safety of the systems. State-
of-the-art of architectures using MAPE-K-loops in particular focus on the following properties.

• Conformance and compatibility: alignment with existing reference architectures, e.g., RAMI
4.0 [167].

• Security: the system is not compromised by using secure communication and source verifica-
tion.

, Vol. 1, No. 1, Article . Publication date: June 2025.



10 Isasa, et al.

• Fault tolerance: support for generic fault handling strategies, e.g., to allow for handling of
unforeseen faults, mostly domain-specific.

• Verifiability: embedded means for validation and verification (cf. Section 5).
Security is addressed in a small number of implementations and with the main focus on ensuring
that the MAPE-K loop is not compromised, e.g., by estimating the trustworthiness of sources [124]
and secure message exchange [153]. All MAPE-K based implementations come inherently with a
well-specified tolerance to faults in the managed system, since this is one of the design goals of
MAPE-K. Verification and security functions can be considered preventive measures against builtin
or intentionally triggered faults. Security breaches might still be encountered, and – when detected
– handled as faults by following, for instance, a dynamic policy update to prevent future incidents.

Safe adaptation is, however, discussed in very few works. Prenzel and Steinhorst [138] use MAPE-
K in the context of safe software updates of industrial control systems and an implementation of
IEC61499. Their aim is to reduce the time between identification of an anomaly and implementing
the adaption. Thus, they group the first three MAPE-K phases into a decision-making phase and
allow to detail the execution phase using the IEC61499 standard (cf. Section 4.4).

The type of trigger, or rather anomaly, for a change varies with the domain and is typically related
to direct sensor data. Namal et al. [124] present an architecture in which a derived attribute is
monitored; they implement a MAPE-K loop that takes decisions based on trust levels of data sources.
They introduce a “Trust Management Service Layer” that receives input for possibly distributed
“Trust Agents”. Namal et al. suggest to compute the trustworthiness of sources by measuring
availability, reliability, irregularities and capacities. Typically, the monitor triggers a response to an
external event. Seiger et al. [150] illustrate how to use a MAPE-K loop to monitor the triggered
adaptation itself. In their architecture, the monitor measures “cyber-physical consistency”, defined
as the delta between the assumed physical state and the actual physical state of a cyber-physical
system (CPS) during adaptation. To fix an encountered issue they escalate to a human.

3.5 Implementation Frameworks
Several frameworks have been developed to facilitate the development of MAPE-K based systems.
Pfannemüller et al. [134] offer a framework to implement adaptive systems, targeting mainly IoT
systems. They base their work on Clafer [90] to model structure and behaviour.

Similarly Krupitzer et al. [105] use a context manager that provides an abstraction layer between
low-level data formats and the control logic. Communication between phases uses a publish-
subscribe mechanism and introduces information categories. When mapped to robotics, it resembles
the infrastructure established by the Robot Operating System (ROS) [159].
Souza et al. [156] present a framework to adjust the difficulty of a game via a MAPE-K loop.

They outline a generic architectural concept for developing a MAPE-K-based system operating
with rule-based reactions. Souza et al. [156] consider parametrization of the number of sensors
used, the monitoring frequency, and provide interfaces to define anomalies and reaction rules.

Next, we consider the works from the point of view of particular phases of a MAPE-K loop.

4 MAPE-K PHASES
Here, Section 4.1 to 4.5 cover each of the phases of the MAPE-K loop.

4.1 Monitor
The monitoring phase gathers data from the managed system, either updating the knowledge
base or initiating the analysis phase. The collected data can range from sensor readings, such as
temperature sensors, ADC outputs, and GPS coordinates, to network-related information, including
network topology, the number of active hosts, and running services. Monitoring can focus on

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 11

Table 3. Summary of Monitoring Approaches in MAPE-K

Category Type Examples / Techniques

Feed Type

Direct Feed Raw or minimally processed data sent to knowledge base

Filtered Feed

Rule-based filtering, Kalman filter, CEP, noise filtering and
normalization, context-aware monitoring, network map-
ping, pre-analysis thresholds, symptom aggregation, adap-
tive ROS monitoring , runtime models for adaptive moni-
toring

Deployment Type
Centralised Aggregation at a single node; suitable for cloud or enterprise

systems

Decentralised Distributed processing at edge or across nodes; suitable for
IoT/CPS

Triggering Method
Real-time Monitoring Continuous data flow for immediate response; useful in

dynamic environments

Batch / On-Demand
Monitoring

Periodic or event-triggered data collection; resource effi-
cient

internal or local data, such as sensor-based tracking in IoT and industrial systems or network
performance metrics in cloud environments. Additionally, it may involve external monitoring, such
as environmental data collection, or a combination of both internal and external data sources.

The critical task of the monitoring system is gathering the data from the managed system, and
providing the necessary data for further analysis and decision making. Most surveyed papers use
the monitor component only to read the data and update the knowledge base. Here, we classify
the papers, based on the strategies, the deployment options, and the triggering method of the
monitoring component. The categories that we have identified are summarised in Table 3, and
detailed in Sections 4.1.1, 4.1.2, and 4.1.3, where we describe surveyed papers.

4.1.1 Direct feed and Filtered Feed Monitoring. Most of the surveyed papers describe use of the
direct feed of monitored data to the knowledge base, but report doing some changes to the data
before passing it on. Rachidi and Karmouch [142] employ predefined rules for detecting anomalies
and filtering data. Feng et al. [71] deploy a Kalman filter to estimate the states of an incubator,
characterised by the air temperature inside an insulated container and the heatbed temperature.

Malburg et al. [115] use Complex Event Processing (CEP) methods to monitor a smart environ-
ment. CEP enables detection of matching patterns in IoT sensor streams and derive specified events
for higher-level systems. Thus, it is possible to react to sudden misleading situations.

Azimi et al. [26] mention preprocessing methods such as noise filtering and normalization, packe-
tizing, and periodically transmitting data to the system management. Elgendi et al. [60] emphasizes
context-aware monitoring to determine the necessity of adaptation dynamically. Papamartzivanos
et al. [131] employ network mappers and sniffers to assess network topology, active hosts, services,
and vulnerabilities, enhancing the adaptivity of Intrusion Detection Systems (IDS). Pre-analysis
methods are used by da Silva et al. [48] to evaluate significance thresholds before forwarding data
to the analyze component. Namal et al. [124] apply aggregation and correlation methods to detect
symptoms requiring further analysis. Cheng et al. [44] support adaptive ROS-based monitoring by
dynamically subscribing to and unsubscribing from relevant data sources at runtime.

, Vol. 1, No. 1, Article . Publication date: June 2025.



12 Isasa, et al.

Monitoring lower-level phenomena like exceptions and diagnosis data requires identifying the
detailed information necessary and feasible to monitor. Adaptive monitoring permits observing a
greater variety of details with less overhead if, most of the time, the MAPE-K loop can operate using
only a tiny subset of all those details. Brand and Giese [33] propose an approach that overcomes
the outlined problems by providing generic adaptive monitoring via runtime models. It reduces the
effort to introduce and apply adaptive monitoring by avoiding additional development efforts to
control monitoring adaptation. Although the generic approach is independent of the monitoring
purpose, it still allows for substantial savings regarding monitoring resource consumption.

4.1.2 Centralized and Decentralized Monitoring. In centralized systems, all monitoring data is
aggregated and processed at a single node or server. This approach is typically used in resource-
rich environments, such as cloud systems or enterprise architectures, where latency and data
centralization are manageable. Most of the surveyed papers employing this strategy focus on the
efficiency and reliability of data aggregation. Alternatively, decentralized monitoring distributes
the workload across multiple nodes or edge devices. This is common in CPS and IoT applications,
where scalability, low latency, and resilience are critical. For instance, Ouareth et al. [130] collect
data using subcomponents through an internal interface.

4.1.3 Real time and Batch Monitoring. In most of the papers the monitoring happens in real-time.
This is particularly useful in dynamic and real-time environments, such as smart factories, where
detecting anomalies or process deviations promptly is essential [115]. On the other hand, Rachidi
and Karmouch [142] mention periodic and on-demand data collection of device parameter values.

4.2 Analyse
The objective of the analyse phase in the MAPE-K loop is to thoroughly investigate and understand
the current state of the system and to identify any deviations from the expected state. This phase
is essential for diagnosing issues, evaluating performance, and gathering insights that will guide
the plan phase. Advanced techniques, such as statistical analysis, ML, and data mining, are often
employed to enhance the accuracy and depth of the analysis. The outcomes from this phase inform
the subsequent plan and decision-making processes in later phases.
There are also works where the analyse phase selects an adaptation plan or implements a

filtering procedure. Additionally, in some cases, the analyse phase generates useful features from
the monitored data, which are then utilized in the plan phase. Based on these observations, we
classify the papers we surveyed into four categories (see Table 4) described in Sections 4.2.1 to 4.2.4.
We conclude in Section 4.2.5, discussing novel views of the role of the analyse and plan phases.

4.2.1 Anomaly Detection. Anomalies are rare items and events, or, more generally, observations
that significantly differ from the majority of the others according to gathered data. The process
of anomaly detection in MAPE-K loop in the analyse phase employs various techniques such as
rule-based methods, statistical methods, and ML or Deep Learning (DL) approaches.

Rule-Based Methods. The most commonly used methods for anomaly detection among the
surveyed papers were rule-based methods [52, 142, 148]. They use a set of explicit, predefined rules
to identify deviations from normal behavior. These rules are often derived from expert knowledge
and historical data. However, due to adaptation, those rules can change over time to fit with the
new input data. Rule-based methods are commonly used because, in many cases, it is easier to
detect anomalies using thresholds, rules, or statistical metrics.

Machine Learning & Deep Learning Methods. ML and DL methods provide more powerful tools
for anomaly detection capable of handling complex and high-dimensional data, detecting intricate

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 13

Table 4. Summary of Analysis Approaches in MAPE-K

Category Type Examples / Techniques

Detection Techniques

Rule-Based Detection Threshold rules, expert heuristics for anomaly
flags [52, 148].

ML / DL Detection
Supervised or unsupervised models (e.g., classifiers,
autoencoders, forecasting networks) used for anom-
aly detection [60, 96].

Data Engineering

Feature Extraction
PCA, encoder-based models; ontology-driven reason-
ing with OWL + SPARQL/SWRL for semantically rich
features [5, 26, 131]

Pre-processing Noise/outlier filtering, semantic filtering, aggregation,
and normalization performed prior to planning [106].

Decision Integration
Adaptation Plan Selection Utility- or prediction-driven tactic choice; Kalman-

based recalibration, tactic ranking [44, 72]

Analyse–Plan RL, proactive workload forecasting, real-time analyt-
ics that directly yield adaptations [97, 172]

patterns that rule-based methods might miss. ML tools are commonly used due to their ability to
detect patterns from larger datasets, enabling even prediction of anomalies [60, 96].

4.2.2 Feature Extraction. Sometimes, the monitored data may not directly facilitate anomaly
detection or offer insights into adaptation [5, 26, 131]. In such cases, the focus of the analyse
phase shifts to generating features used in the plan phase. This approach ensures that even if direct
anomaly detection or system adaptation insights are challenging from raw data, the derived features
can still inform effective planning for adaptation and performance optimization. Feature extraction is
mainly implemented by applying ML and DL methodologies such as Principal Component Analysis,
Encoder-based models, etc. Semantic ontologies have been introduced to enhance the generation
of semantically meaningful features. For example, ontologies modeled in OWL and reasoning
techniques such as SPARQL queries and SWRL rules enable advanced interpretation and runtime
reasoning, directly supporting adaptation plan generation and semantic interoperability [106].

4.2.3 Data Preprocessing. Given that the analyse phase bridges the gap between the monitor and
plan phases, several studies have utilized it for preprocessing monitored data before passing it to
the plan phase [30]. Authors recommend this approach particularly when raw input data contains
noise or outliers. Filtering methods and semantic reasoning are frequently employed to refine
and prepare data for the subsequent plan phase. This ensures that the plan phase can extract new
execution plans based on cleaner and more reliable data, enhancing the overall effectiveness of the
system’s adaptation and decision-making capabilities.

4.2.4 Adaptation Plan selection. Although adaptation plans are typically formulated during the plan
phase, there are scenarios where adaptation plans can also be utilized in the analyse phase [44, 72].
This is because the plan phase may transition from creating adaptation strategies to executing
actions aimed at achieving specified goals. As a result, the analyse phase can incorporate insights
derived from these actions to refine its processes and optimize feature extraction or data processing
techniques. Therefore, while the primary role of the plan phase is to execute actions to achieve
goals, its decisions can also shape and enhance the subsequent analyses.

, Vol. 1, No. 1, Article . Publication date: June 2025.



14 Isasa, et al.

In some works, the analyse phase plays a direct role in selecting adaptation strategies based on
utility evaluations, predictive models, or observed system behavior [44, 72]. Rather than merely
detecting anomalies, the analyse step may proactively determine suitable adaptations, as seen in
utility-driven or prediction-based approaches [8, 120]. However, when no anomalies are detected
or predicted, these systems often lack fallback mechanisms, making the availability and selection
of adaptation plans in the analyse phase critical for robust self-adaptation.

4.2.5 Analysis and Plan. A key observation in the surveyed papers is that the distinction between
the analyse and plan phases is becoming blurred. In particular, studies employing Reinforcement
Learning (RL), proactive workload prediction, and runtime analytics demonstrate that adaptation
decisions are often derived directly from the analysis. For example, RL has been applied for
dynamic fog-service provisioning in IoT systems, while proactive workload prediction has been
used for autonomic resource allocation in cloud computing [97]. Similarly, adaptive virtual network
allocations leverage real-time analytics to enhance network optimization [172].
This evolving perspective suggests a tighter coupling between the analyse and plan phases,

where advanced analytics not only assess system behavior, but also actively inform and refine
adaptation strategies. As a result, the analyse phase is no longer a passive evaluation stage but a
key driver of intelligent, autonomous adaptation within the MAPE-K loop.

4.3 Plan
The plan phase determines an adaptation strategy to transition the system from its current state to
a desired state, leveraging insights from the analyse phase. The approach to finding a (near-)optimal
plan varies depending on system requirements and domain and can encompass any self-x goals [163].
However, a well-designed adaptation plan is crucial in ensuring the system’s functionality and
performance in dynamic environments. Consequently, much of existing contributions within the
literature highlight this phase as a key focus of their MAPE-K research. Planning approaches have
been divided into six categories summarised in Table 5 and described below (Sections 4.3.1 to 4.3.6).

4.3.1 Rule- and Policy-based. These approaches constrain the adaptation space by using a combi-
nation of logical rules and system policies to guide decision making. This ranges from rules that
select specific actions under specific conditions to high-level directives that act as guidelines for
achieving the desired system state. For instance, one of the rules defined by Al-Dhuraibi et al. [9]
specifies that if the CPU usage exceeds 90% then an additional vCPU core must be used. In contrast,
the Track-based Traffic Control System developed by Bagheri et al. [27] exemplifies the use of
a policy instead of a rule, specifying that “adaptation should be designed in a way that avoids a
collision and considers the fuel level required for the new schedule/flight plan.”

Many strategies fall between these two examples, employing a combination of rules and policies.
The set of rules- and policies can either be fixed, as demonstrated by Al-Dhuraibi et al. [9], or
dynamically updated based on the knowledge base, as shown by Affonso et al. [3].

This rule- and policy-based planning approach has the benefit of allowing for simple, interpretable,
and efficient planning algorithms. A limitation of this is the inability to dynamically evolve rules
in response to dynamic environments. Additionally, there is no guarantee that predefined rules
will yield (near-)optimal adaptation outcomes. To address these shortcomings, there is research on
dynamically evolving rules to reflect real-time information about the environment [174]. Several
studies utilize variations of planning approaches discussed below to dynamically generate the rules.
For instance, Zhao et al. [174] use reinforcement learning, Liu et al. [112] use a genetic algorithm,
and Ghahremani et al. [77] compare various supervised ML methods.

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 15

Table 5. Summary of Planning Approaches in MAPE-K

Category Type Examples / Techniques

Declarative planning

Rule- and Policy
Logical rules and system policies determines plan
[27]. Either fixed [9] or dynamically updated based
on knowledge [3].

Semantic Reasoning

Planning is driven by an ontological representation
defining concepts, properties, and relationships. Plan
is often found using a semantic reasoning engine
[150, 158].

Optimization
Planning is defined as an optimization problemwhere
different, mainly heuristic, techniques are used [14,
29, 91].

Learning

Offline Learning
Data-driven planning using ML techniques that are
trained before deployment. Used at runtime to gener-
ate plans [61, 83, 108].

Online Learning
Data-driven planning using ML techniques that con-
tinually learn during system execution. Typically
done with RL [114, 121].

Other Planning that combines multiple approaches or did
not fit within any category.

4.3.2 Semantic Reasoning-based. Ontological knowledge representations define concepts, prop-
erties, and relationships within a domain. In this section, we cover works in which the planning
approaches are driven by an ontological representation. While this section emphasizes the planning
aspects of the approaches, Section 4.5 describes the details of the knowledge representation.
Similar to rule- and policy-based approaches, ontology-based planners employ logical rules to

generate plans. However, they are particularly suited for complex domains where domain-specific
notations are required to accurately represent the environment’s state. In such domains, the intricate
relationships between entities and the need for semantic reasoning make ontology-based planners
essential for ensuring accurate and context-aware decision-making.

In these studies, the plan component leverages semantic-reasoning engines to analyse the current
system state and subsequently generate an adaptation plan. This plan is typically devised based on
howmultiple domain-specific components within the environment relate to each other. For example,
Teimourikia and Fugini [158] utilize an OSHA-based ontological model for safety expertise, where
risk analysis is initiated by hazardous events, and the planner devises risk-preventive strategies
using predefined hazard-analysis documents or an adaptive risk-treatment model.

An alternative approach is presented by Seiger et al. [150] who address inconsistencies between
the sensed physical world and the assumed cyber world in CPSs. In this framework, the ontology
defines observable changes within components, and when discrepancies are detected, the planner
formulates a self-healing adaptation based on the results of a “Compensation Query”.

4.3.3 Optimization-based. When mathematical optimization techniques are used to generate a
new plan formulated as an optimization problem, we have an optimization-based planner. An
optimization problem consists of three key elements: the objective function, decision variables, and
constraints. The objective function captures the desired adaptation outcome, while the decision

, Vol. 1, No. 1, Article . Publication date: June 2025.



16 Isasa, et al.

variables represent the controllable parameters that can be adjusted to achieve it. Constraints impose
system limitations that must be respected during adaptation. Given these elements, optimization
algorithms identify the optimal set of values for the decision variables that maximize or minimize
the objective function while satisfying the given constraints.

A common characteristic of optimization-based planners is the prevalent use of heuristic-based
optimization methods, perhaps due to their computational efficiency compared to exact meth-
ods [14, 72]. Beyond this, a diverse range of optimization algorithms were employed, with a slight
preference for particle swarm optimization algorithms [6, 14]. Other approaches include ant-colony
optimization algorithms [91, 126] and planning as a constraint satisfaction problem [29, 127].

4.3.4 Offline machine learning-based. This category includes data-driven planning using ML
models trained prior to system deployment and utilized at runtime to generate new plans. These
models leverage a diverse range of ML techniques, spanning both supervised and unsupervised
learning, such as generative adversarial networks [83], K-means clustering [61], DL [108], federated
learning [59], and K-nearest neighbors [128]. Their strength lies in their ability to recognize complex
patterns and handle high-dimensional data, enabling effective analysis and decision-making in
dynamic environments [83]. However, practical limitations may arise due to their data-driven
nature, as they rely on high-quality datasets for effective model training.

4.3.5 Online machine learning-based. This category includes data-driven planning models that, like
their offline counterparts, have the option to be trained offline using pre-collected data. However,
unlike purely offline models, they continually learn and adapt during system execution, refining
their predictions and improving decision-making in real-time [114, 121].

This characteristic allows these models to handle truly dynamic environments, where the rules
governing interactions, states, and outcomes may evolve unpredictably over time. As such, they
present a promising approach for managing uncertainty and addressing unprecedented scenarios, a
significant challenge for self-adaptive systems as discussed by Weyns [163]. The majority of studies
in this category employ reinforcement learning techniques, particularly Q-learning, while others
explore learning automata or leverage a combination of various ML approaches.
A key challenge, particularly when considering reinforcement learning techniques, is the exis-

tence of the exploration-exploitation dilemma. While exploring new planning policies is crucial for
discovering optimal strategies, executing them can lead to suboptimal performance. Conversely, ex-
ploiting known policies can provide immediate performance benefits but may hinder the discovery
of superior strategies. Balancing this trade-off is complex and significantly impacts the method’s
effectiveness. The works of Lewis et al. [109] and Esterle [65] explore this dilemma in the context
of self-organizing systems with a focus on the individual system and their local decisions as well as
the group behaviour in collaborative systems, respectively.

4.3.6 Other methods. Some surveyed papers employed planning approaches that did not align with
any of the above categories. This is either because planning utilizes a combination of techniques
from different categories or the technique itself does not fit within any category, and the number
of contributions in this area did not warrant the creation of a separate category.

4.4 Execute
The execution phase in the MAPE-K loop is responsible for applying the generated plan to the
managed system, ensuring the transition from planning to operational implementation. This phase
is not merely about forwarding execution plans, but also involves dynamic resource allocation,
error recovery, and security enforcement. Execution strategies vary based on automation levels,
ranging from fully automated processes in cloud computing to semi-automated systems requiring

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 17

Table 6. Summary of Execution Approaches in MAPE-K

Category Type Examples / Techniques

Execution Role

Passive Execution Directly applies plan without further verification

Active Verification
Consistency checks before execution,
Strategy validation and filtering,
Security integration

human oversight. Additionally, execution methods incorporate workflow orchestration, control
systems, and multi-level execution strategies, integrating safety checks such as authentication,
policy enforcement, and data integrity verification. Understanding these aspects is crucial for
optimizing execution efficiency, reliability, and security. We identified the categories in Table 6.
Some approaches treat execution as a passive phase that directly applies the changes received

from the plan phase without additional verification. Rachidi and Karmouch [142] highlights that
execution involves structuring and formatting configuration plans and dispatching them tomanaged
devices without intervention. Singh and Kim [153] reinforces this idea by stating that execution
can be predefined based on rules stored in the knowledge component, limiting its role to plan
dissemination. In [26], the authors allocate data transmission (i.e., bandwidth) management to the
execute component. This can be extended to cover other types of system resources (e.g., energy) by
adding a computing component in the fog layer to set system behaviors during monitoring.

Seiger et al. [150], on the other hand, emphasize that execution does not simply forward the plan
but actively verifies consistency through the MAPE-K loop, ensuring objective fulfillment before
proceeding. Poggi et al. [136] highlight that execution includes model adaptation by filtering and
validating strategies before implementation, ensuring alignment with real-time conditions.

Security adaptation is an integral component of the execute phase in some systems. Amoud
and Roudies [17] discuss how execution integrates security enforcement, intercepting data before
adaptation and applying policy-driven modifications. Eryilmaz et al. [64] describe execution as
responsible for reconfiguring security settings dynamically by selecting the best-suited data sources
and processing chains to maintain system security and accuracy.
Faraji Mehmandar et al. [69] and Gamal et al. [73] present execute as an active phase where

dynamic resource allocation and load balancing occur before executing tasks. Bucchiarone et al. [37]
further elaborate on execution as a self-healing mechanism, with not only plans being applied, but
also dynamic scaling, rebalancing, and restarting microservices carried out to maintain efficiency.

Some frameworks extend execution beyond task initiation by incorporating real-time adaptation.
Bozhinoski et al. [32] detail execution strategies that involve stopping, starting, and reconfiguring
system nodes as needed, rather than merely executing static instructions. Nazeri et al. [126] describe
an execution phase that leverages intelligent scheduling and optimization algorithms to ensure
energy efficiency and balanced workflow deployment in fog computing environments.

4.5 Knowledge
The knowledge component records previous experiences and evolves continuously with adaptations,
ensuring that configurations utilized in decision making are closely tied to results from past
iterations. The specific structure and implementation of the knowledge component can vary
significantly based on application and system context, lacking a universally defined standard.
Table 7 provides a summary. A significant portion of the reviewed literature, however, does not
provide details of the knowledge component. This makes it difficult to identify commonalities.

, Vol. 1, No. 1, Article . Publication date: June 2025.



18 Isasa, et al.

Table 7. Summary of Knowledge Approaches in MAPE-K

Category Type Examples / Techniques

Connectivity Global Shared and accessible throughout all MAPE-K phases.

Local Only used by one or a few MAPE-K phases.

Content

Data Represents all forms of monitored data.

Logs Encompasses all recorded logs.

Strategies Includes high-level plans, policies, decision strategies,
goal definitions, and adaptation tactics.

Rules Refers to predefined conditions that dictate system
behaviour.

Metrics Comprises performance indicators used for system
evaluation.

Models Encompasses a wide range of modelling elements.

Resources Includes all necessary resources required for MAPE-
K operations.

Representation

Ontology- and Rule-Based Ontology languages to formally represent and reason
about knowledge in a semantic format.

Graph- and Tree-Based Capture relationships and hierarchical structures in
contextual knowledge.

Structured and Relational Structured formats for data storage.

We, therefore, concentrate on works where the knowledge was a major focus of the paper, with
approximately half of the reviewed works barely addressing the knowledge component at all.

4.5.1 Uses of knowledge. Arcaini et al. [22] explain how the knowledge component stores data
shared across components, promoting smooth coordination within a decentralized MAPE-K loop.
In some instances, the knowledge component supports security-related decisions, with Amoud
and Roudies [18] presenting a knowledge Unit that synchronizes system components by sharing
critical data, including a Service States File linking security concerns to environmental factors.
Closson et al. [47] assert the knowledge component’s critical role in making informed decisions
during execution. Ettahiri and Doumi [67] describe a process for monitoring the system, comparing
current cases with existing knowledge, analyzing similarities, and proposing new plans based on
past experiences. Iglesia and Weyns [87] emphasize that a dynamic knowledge component enables
real-time adaptations, ensuring flexibility and responsiveness to changing conditions.

4.5.2 Architecture. The architecture of the MAPE-K loop differs significantly across implemen-
tations (see Section 3), impacting how the knowledge is structured and managed. Rachidi and
Karmouch [142] propose an architecture where the knowledge component, referred to as Ontology
& Policy Management, primarily interacts with the configuration planner and analysis components.
Seiger et al. [149] highlight a model-based approach in which data is stored as ontologies, updated
with each data change. Abdennadher et al. [1] describe a dual-layer structure, with the knowledge
component comprising a knowledge and a decision layer. Elsayed et al. [62] set the knowledge
component into a storage layer, while Hakim et al. [82] ensure consistency and reflexivity through

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 19

a storage and self-management layer that maintains static context knowledge. Mazidi et al. [119]
detail how the knowledge is stored in the database layer, while Müller et al. [122] position it within
a subdivision of the cyber layer, with data presented in UML/XML for configuration.

4.5.3 Contents of the knowledge component. We have classified the contents of the knowledge
component in the various works to gain insights into their purpose and applications. Different works
refer to similar concepts using varying terminology, making it challenging to directly compare
different knowledge-component implementations. The following classification gives a (potentially
incomplete) description of the various contents types and forms of the knowledge component: data,
logs, configurations, strategies, rules, metrics, models, and resources.

4.5.4 Data representation and formats. Various works focus on data storage and representation.
Almeida et al. [15] use XML for information storage. Silva et al. [152] and Teimourikia and Fug-
ini [158] employ the Ontology Web Language (OWL) for structuring knowledge. Ashraf et al. [25]
integrate OWL with rules defined in the Semantic Web Rule Language (SWRL). Amja et al. [16]
also use SWRL. Parvizi-Mosaed et al. [133] formalize and store knowledge using OWL.

Seiger et al. [149] utilize a graph-based representation of the context ontology. Khorsand et al. [96]
adopt graphs and trees for representing models and ontologies. Examples are given in Mehmandar
et al. [121], Khorsand et al. [96], and Koehler et al. [102], where application data, resources, and
metrics are stored in a database. Seiger et al. [148] use a graph-based structure for efficient knowledge
representation, echoed in Seiger et al. [150], where both graph-based and ontological representations
of context data are employed. Senthilvelan et al. [151] opt for a tabular format for data structuring.

4.5.5 Knowledge evolution and adaptation. Aguayo and Sepúlveda [4] specify that, with knowledge
and ML, systems can learn from past actions. As highlighted by Calinescu et al. [39], the knowledge
can comprise “a priori knowledge”, often initial and imprecise, and “a posteriori knowledge”,
generated from runtime experiences. Dautov et al. [52] suggest that knowledge is a common
vocabulary for a managed system, adapting over time. Ma and Wang [113] outline a progression
from basic rules to increasingly sophisticated decision making. Krupitzer et al. [105] highlight
that learning cycles contribute to the knowledge, enabling adaptations based on past experiences.
Parsaeefard et al. [132] emphasize the knowledge’s role in learning and anticipating conflicts.

The knowledge component implementation presents several challenges. Ashraf et al. [25] note
that the knowledge components’s size can adversely affect performance. Nascimento et al. [125]
point out that knowledge representation may be difficult for humans to interpret, suggesting natural
language extensions as a potential solution. Arcaini et al. [23] highlight challenges in distributed
loops, such as preventing inconsistent updates and avoiding redundant knowledge.

5 VERIFICATION OF MAPE-K LOOPS
Formal verification of MAPE-K loops attempts to ensure that systems meet their requirements and
behave safely throughout their operation. This is naturally a challenging task, since self-adaptive
systems are designed to respond to unanticipated circumstances. Verification requires us to handle
uncertainty in modelling the system’s behaviour in these circumstances.

Researchers have applied a variety of existing formal methods to verify the different components
of systems involving MAPE-K loops, whilst developing new approaches and abstractions to model
the self-adaptation process. In this section, we cover the variety of modelling techniques that have
been used to model the MAPE-K loop (Section 5.1), the specification languages used to express the
requirements of self-adaptive systems (Section 5.2), and the verification approaches used to check
that a system meets its requirements (Section 5.3). We present final considerations in Section 5.3.2.

, Vol. 1, No. 1, Article . Publication date: June 2025.



20 Isasa, et al.

5.1 Semantics for MAPE-K verification
A key challenge in verifying MAPE-K loops is establishing a formal semantics that gives mathe-
matical meaning to both the behaviour of the managed system, and the self-adaptation process
implemented in the MAPE-K loop. Such semantics provide mathematical representations of the
states and behaviors of computational systems providing a formal model of the system. We consider
works that use existing behavioural-modelling approaches in Section 5.1.1, and work that introduce
specific approaches to model self-adaptation in Section 5.1.2.

5.1.1 Applicable modelling notations. Many works rely on variants of state machines to model
the underlying behaviour of the system. These approaches include Abstract State Machines
(ASMs) [22, 171] and Petri nets [41]. ASMs form the basis of the ASMETA framework [74],a
general-purpose framework for state-based modelling. Yang et al. [171] propose a variation of
ASMs named Interactive State Machines (ISMs). These machines distinguish between environmen-
tal variables and controller variables; this allows the authors to model environmental constraints
and uncertainty by defining intervals of possible values for variables.
An alternative approach uses the Z notation [54], a formal specification language based on

set theory, for providing logical contracts of the operations. Applications of this approach to
model self-adaptivity and the MAPE-K loop include FORMS (the FOrmal Reference Model for
Self-adaptation) [166], which introduces a formal model of self-adaptation (see the next section).
The next category of work captures real-time aspects of the system behaviour. This makes it

possible to reason about the timing of events, and to verify properties regarding real-time constraints
on operations. Approaches include uses of timed automata, which extend finite state machines
with clocks to model the timing of transitions. Other options are the SMARTS framework, which
uses Timed Communicating Object Z [139] (a timed, concurrent extension of the Z notation), and
the CARSS framework [95], which uses timed-arc Petri nets [88].
Finally, there are works that model stochastic aspects of a system’s behavior. This makes it

possible to reason about reliability, performance, and Quality of Service (QoS) requirements. The
sources and potential impacts of stochastic behavior covered are diverse, and include environmental
uncertainty and load and performance characteristics variability.
The most common way to model stochastic behavior is through Markov chains [68, 103, 154].

These are state-based models in which behavior depends only on the current state of the system,
not its history. States are advanced through actions that commonly have a statistical component
that dictates the next state. These actions also have a reward, which is also statistical in nature.
Stochastic behaviour can be combined with timed behaviour, as shown by Li et al. [110], who use
UPPAAL-SMC’s models: timed automata with probabilistic transition functions.
Queuing networks are another formalism for modelling stochastic behaviour which focus on

performance analysis and have applied to modelling self-adaptive systems in [24]. In the next
section, we focus on modelling of self-adaptation specifically.

5.1.2 Modelling self-adaptation. In this section, we discuss works that introduce direct modelling
support for self-adaptation, and how these have been applied to modelling the MAPE-K loop.
The conceptual framework for adaptation introduced by Bruni et al. [36] models systems as

labelled transition systems. It characterizes self-adaptive systems as a parallel composition FC ∥ CD
between some fixed component FC and a control data component CD. Here, ∥ denotes the parallel
composition of two labelled transition systems, synchronizing on shared labels. 𝐹𝐷 represents the
non-adaptive components of the system (i.e. the managed subsystem), and 𝐶𝐷 captures changes in
response to adaptations (i.e. by a managing subsystem). Whilst conceptually simple, this model can
account for very general schemes of adaptation in response to changing external environments or

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 21

goals. It was applied directly to modelling the MAPE-K architecture, with the loop determining the
control data. Within this model the environment also plays a key role and is treated as a labelled
transition system 𝐸 in composition with the system and its control data.

An alternative abstract model captures self-adaptation through the use of reflective subsystems
whose role is to monitor and adapt the managed components of the system [19]. This approach
requires the reflective subsystem to contain a reflection model that refines aspects of the managed
system (e.g. architecture, submodules, data) required for detecting planning adaptations. This
reflection-based approach is a key feature of the FORMS framework [166], which explicitly models
reflective components and computations corresponding to each component of the managed system.
This reflective view is unified with the MAPE-K architecture by identifying reflective computations
corresponding to each stage of the MAPE-K loop [166, Section 3.3].

In a similarly approach, the model of Camilli et al. [41] defines an API for modifying the behavior
and state of the managed system. In this case, it is realised through an emulator Petri net to handle
dynamically updatable data representing the managed system. This uses an extension of Petri nets
focused on dynamic evolution, and takes a two-level approach to modelling self-adaptive systems,
with the first level capturing the managed system and the second, the MAPE-K loop.

5.2 Requirements formalisms
In addition to modelling the system under study, verification also requires mechanisms to specify
the properties that the system should uphold. Capturing these requirements brings us to two related
but distinct challenges. First, it is necessary to decide which requirements are relevant and express
them with sufficient precision to enable formal verification. Second, we need to relate the meaning
of these requirements to the underlying semantics of the system and its self-adaptations, making it
possible to evaluate whether a given system model meets its requirements.
A large number of works use temporal logics, which specify timed properties using logics that

combine assertions about the events or states of the system, with standard logical and temporal
operators. One of the most common temporal logics used in the literature is Linear Temporal
Logic (LTL), which uses the modal temporal operators eventually (♦), which states that a property
𝜙 must be true at some point in the future, and always (□) which states that a property 𝜙 must
be true at all points in the future. Since its introduction to computer science by Pnueli [135] in
1977, LTL has been one of the most widely used formal languages for specifying requirements of
computational systems, and of MAPE-K loops in particular [22, 23, 116, 161].
A number of works [22, 101] have also used the Computation Tree Logic (CTL) [46], which

extends LTL with temporal operators that allow assertions about the branching structure of the
computation tree. There are also extensions of LTL specifically focused on adaptations.

Zhao et al. [175] propose that properties for self-adaptive systems with distinct modes fall within
the following categories: (a) local properties, which are expected to hold within a particular mode,
but may not persist after subsequent adaptations; (b) adaptation properties, which characterise how
the state of a system changes upon adaptation; and (c) global properties, which must always hold
regardless of when and how the system is adapts. Zhao et al. address these classes of properties
through the introduction of mode-extended LTL [175], which adds operators that make it possible
to reason about the modes of a system and the mode locality of properties.
Adapt operator-extended LTL (ALTL) [173] is another extension of LTL with an adaptation

operator that makes it possible to specify the state of a system before and after an adaptation event.
This makes it possible to express adaptation properties in addition to local and global properties,
and to reason about the impact of adaptations on the system’s behavior.
Timed aspects of MAPE-K loops have also be specified using timed temporal logics such as

MTL (Metric Temporal Logic) [92] and TCTL [86]. On the other hand, probabilistic temporal logics

, Vol. 1, No. 1, Article . Publication date: June 2025.



22 Isasa, et al.

such as PCTL (Probabilistic Computation Tree Logic) [38, 103] have also been applied to specify
probabilistic properties such as reliability requirements.

The hard distinction between the role of modelling and specification languages is not always clear,
since many modelling languages support abstraction mechanisms that can be used to omit details
of a systems behaviour until the model becomes more of a description of system requirements than
a description of the system implementation. Under this approach, modellers start with a high-level
model of the system based on the requirements and iteratively refine it to a concrete model that can
be implemented, with each refinement step being verified to ensure that the new model conforms
to the higher-level model. Such refinement-based approaches are popular in the Z community,
and readily applicable to FORMS [166] and SMARTS models [139]. Hachicha et al. [81] apply such
a refinement-based approach to verifying that Event-B models of MAPE-K loops follow certain
timed patterns, whilst Göthel et al. [80] apply refinement checks on models in the CSP process
algebra [145] to check the abstract design patterns based on the FDR model checker.

5.3 Verification methods
We cover oflline verification, carried out at design time (Section 5.3.1), and at runtime (Section 5.3.2).

5.3.1 Offline formal verification. In the CARSS framework [95], the authors use the TAPAAL
model checker [53] to verify timed properties specified in TCTL. For probabilistic properties, Korn
et al. [103] propose the use of probabilistic model checking in PRISM to check PCTL properties of
different strategies using a Markov Decision Process (MDP). These strategies are then stored in the
knowledge database and the plan component decides which one to run at runtime.
Statistical model checkers can give approximate estimates of the satisfaction probabilities of

formulae in a manner that scales better to realistic systems. This is used by Li et al. [110], via the
UPAAL-SMC model checker, to verify stochastic behaviours of decentralized MAPE-K loops.

Yang et al. [171] use strategies encoded as paths of a state machine and extract logical statements
from the guards of the transitions of thestrategies. These statements are enhanced with uncertainty
and, in conjunction with a failure condition, sent to a SAT solver to see if the failure condition can
hold at any point of the path. Probabilistic approaches can synthesise optimal control loops, as
shown by Carwehl et al. [42], who present techniques to synthesise loops that guide exploration to
maximize reduction of uncertainty (as defined by a parametric DTMC specified in PRISM). Song
et al. [154] propose a cheaper verification process: they use model slicing before model checking.

5.3.2 Runtime verification. These techniques tend to be more lightweight, as they are based on
a system execution. So, they do not provide guarantees about all possible behaviours. However,
online verification can respond to unforeseen environmental conditions and adaptations. There is
a significant link between the concept of runtime verification and the MAPE-K loop monitoring.

Runtime verification can also be applied to the MAPE-K loops themselves, as a meta-adaptation
approach. Klös et al. [101] represent meta-adaptation information within the knowledge base,
allowing a MAPE-K loop to monitor and adapt to the performance of past adaptations.
A related approach is that of correct-by-construction methods that ensure correct behaviour

through their use of formal models at runtime, as the basis of their planning phases. In Activ-
FORMS [86], this is done through the use of timed automata models of the underlying system. The
authors identify runtime monitoring with the adaptation goals of a MAPE-K loop, and use a virtual
machine to switch between different models at runtime.

Another such approach is proposed by Cifuentes et al. [45], who produce correct-by-construction
plans by solving Constraint Satisfaction Problems (CSPs) at runtime. Kamburjan et al. [92] apply a
related X-by-construction approach to a digital twin-based system, where a MAPE-K loop maintains
the relationship between the digital twin and the physical system. This approach uses a knowledge

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 23

graph to represent the physical world and models, and uses Metric Temporal Logic (MTL) to specify
requirements relating them. Wright et al. [168] propose an approach for using a continuous time
dynamical system as a model for a digital-twin–based MAPE-K loop, and then use the Flow* tool
to verify the Signal Temporal Logic (STL) properties of the system at runtime.

Probabilistic models and probabilistic model checking forms the basis of MAPE-K based runtime
verification proposed by Calinescu et al. [38]. This approach is refined by Fang et al. [68] who
propose the PRESTO framework to improve the scalability of runtime probabilistic verification.

6 DISCUSSION
In this section, we first we provide an analysis of the numbers of papers in each of the categories
of the taxonomies used in our survey (Section 6.1). Next, we present an statistical analysis that
identifies how those categories are correlated (Section 6.2). With these results, if a designer decides
to implement a phase of the MAPE-K loop using a specific technology (for example, use machine
learning for Analysis), we provide here insight on how to implement the rest of the phases. We
cover verification in Section 6.3. We finally identify research gaps (Section 6.4).

6.1 Results analysis
As already said (in Section 2), as part of the survey, we have classified each paper that describes an
implementation of a MAPE-K loop according to a taxonomy for each phase. For convenience, we
have plotted that information in Fig. 3, with a graph for each phase. The value n defined in the
caption of each graph defines how many papers discuss the corresponding phase.

The Monitor phase is a good representative of the distribution of papers in each classification. A
category, usually the simplest, dominates the taxonomy. In this case, the category “Direct-feed”
covers the most common technique used to implement the Monitor component. This is a good
approach for applications that do not collect complex or abundant data.
The Analyse phase is most commonly used as a way to detect anomalies, operating over raw

environment data coming from the Monitor phase. In this case, either through rule-based or
ML approaches, the Analysis phase aborts the MAPE-K loop’s execution if the data contains no
anomalies. Another two uses of the Analyse phase is feature extraction and data preprocessing,
which are less focused on the environment; the applications are less common.

For the Plan phase, the distribution of surveyed papers is more balanced. It is natural that the
phase with the most complex responsibilities, bearing the load of deciding on the new behaviour
of the system, has papers spread through more categories. Still, over half of the papers are in the
“Rules and policy” category. The rest of the approaches are mostly uniformly distributed, with
solving an optimization problem being the second most common.
The Execution phase, in most surveyed papers, is the simplest one. Very commonly, it is just a

simple pass-through execution. However, there is still a significant amount of papers that report
the use of a controlled execution, specifying the method by which they deploy the plan.
For the Knowledge component, we surveyed data that is stored. Most commonly, it is the data

read by the Monitor. Models of the system or adaptation rules are also commonly stored.

6.2 Inter-phase Analysis
We discuss here the the impact of selecting an approach from a particular category to implement a
phase on the category of the approach that should be chosen for the remaining phases. To do that,
we built contingency tables for each pair of phases and conducted a Fisher’s exact test, running
Monte Carlo simulations (as the marginals are not fixed). Our null hypothesis is that the tables are
not associated, that is, it is probable enough to generate them from a table following the uniform
distribution with the same marginals. The p-values (smaller means more associated) showing the

, Vol. 1, No. 1, Article . Publication date: June 2025.



24 Isasa, et al.

Monitoring Classes, n:138

Direct-feed

Filtered-feed

Decentralized

Batch

Analysis Classes, n:168

Anomaly Detection (RB)

Anomaly Detection (ML)

Feature Extraction Data Preprocessing

Adaptation Plan Selection

Planning Classes, n:155

Rule and policy

Optimization

Online learning
Semantic Reasoning

Other

Offline learning

Tree

Execution Classes, n:159

Pass-Through

Controlled

Data
Mod

els
Ru

les

Str
ate

gie
s

Log
s

Metr
ics

Con
fig

ura
tio

ns

Re
sou

rce
s

Knowledge saved data, n:90

0

10

20

30

40

50

Fig. 3. Distribution of classes of the MAPE phases and objects stored in K.

M A P E

M — 0.4859 0.0868 0.0001
A 0.4859 — 0.0289 0.2492
P 0.0868 0.0289 — 0.0113
E 0.0001 0.2492 0.0113 —

Table 8. P-values from Fisher’s exact test for pairwise comparisons between classes.

probability to generate a table as bad or worse for each pair of phases are given in Table 1. A graph
visualizing the contingency tables (normalized by dividing the value in each cell by the sum of the
amount of papers on each corresponding category) for each pair of phases is shown in Fig. 4.

As we can see from Table 8, the design choices for the Plan phase have the biggest association with
the choices for the other phases, coinciding with Plan being the phase with the largest responsibility.
It dictates the adaptive behaviour of the MAPE-K loop, and as such choosing how to implement it
influences an engineer’s decision on how to implement the other phases.

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 25

Batch Decentralized Direct-feed Filtered-feed
M class

Adaptation Plan Selection

Anomaly Detection (ML)

Anomaly Detection (RB)

Data Preprocessing

Feature Extraction

A 
cl

as
s

Batch Decentralized Direct-feed Filtered-feed
M class

Offline learning

Online learning

Optimization

Other

Rule and policy

Semantic Reasoning

Tree

P 
cl

as
s

Batch Decentralized Direct-feed Filtered-feed
M class

Controlled

Pass-Through

E 
cl

as
s

Ad
ap

tat
ion

 Pla
n S

ele
cti

on

Ano
maly

 Dete
cti

on
 (M

L)

Ano
maly

 Dete
cti

on
 (R

B)

Data
 Pr

ep
roc

ess
ing

Fea
tur

e E
xtr

act
ion

A class

Offline learning

Online learning

Optimization

Other

Rule and policy

Semantic Reasoning

Tree

P 
cl

as
s

Ad
ap

tat
ion

 Pla
n S

ele
cti

on

Ano
maly

 Dete
cti

on
 (M

L)

Ano
maly

 Dete
cti

on
 (R

B)

Data
 Pr

ep
roc

ess
ing

Fea
tur

e E
xtr

act
ion

A class

Controlled

Pass-Through

E 
cl

as
s

Controlled Pass-Through
E class

Offline learning

Online learning

Optimization

Other

Rule and policy

Semantic Reasoning

Tree

P 
cl

as
s

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 4. Visualization of contigency tables between MAPE phases (normalized).

Looking at the M-P contingency table, we can see that the strongest category correlation Rule and
Policy planning with Direct Feed monitoring, as papers that focus on applications of the MAPE-K
loop, like the work of Al-Dhuraibi et al. [9], or focus on other phases, like the work of Mazidi
et al. [118], report on works where the option was simplifying the Monitor and Plan phases. There
is also a connection between Batch monitoring with Semantic Reasoning planning. However, the
lack of papers that report on work that adopt Batch monitoring led to this unexpected result, as we
have found no connection between the two categories.

The A-P contingency table also shows some interesting correlations. First, we can see that Rule
Based Anomaly Detection analysis is correlated to Rule and Policy planning. The reason for this
correlation is again due to empirical rules being the simplest way to implement these phases, and as
such are commonly used on papers exploring new applications like the work of Albassam et al. [10].
Furthermore, the learning-based planning categories are also highly correlated to some of the
Analyse categories. On the one hand, ML Anomaly Detection and Online Learning planning are

, Vol. 1, No. 1, Article . Publication date: June 2025.



26 Isasa, et al.

CTL
LTL
PCTL
TCOZ
TCTL
other

Formalism

design time
offline
runtime

Verification
Time

aspect-oriented
direct
layered
logical
multi-agent
reactive
reflective
virtual machine

Self-Adaptation
Approach

Fig. 5. An overview of the papers considered by requirement specification language, time of verification, and
the approach taken to modelling self-adaptation.

commonly used in conjunction, since the same neural network can be used for both phases. An
example is the work of Soto et al. [155], where learning is based directly on the data passed from
the Monitor phase. On the other hand, Feature Extraction analysis and Offline Learning planning
show some correlation as well, as extracting the most relevant dimensions of the data is commonly
used alongside ML techniques, as in the work of Ortiz et al. [129].
Finally, there is also some association in the relationships M-A, M-E and P-E. Relationships

between the Execute phase and other phases are not worth discussing, as there are only two
categories in the Execute taxonomy and the distribution is extremely unbalanced, leading to
significant statistical noise. However, there is a noteworthy category relation in theM-A contingency
table concerning Data Preprocessing and Direct Feed, since if Filtered Feed monitoring preprocesses
the data, it is redundant to do it again on the Analyse phase.

6.3 Verification
The techniques we have identified cover almost all the state of the art in formal methods, from
modelling to the verification approaches (see Fig. 5). There is one clear exception: hybrid systems
modelling and verification. Hybrid systems are systems that have a continuous timed domain
and a discrete computational one. These systems are commonly seen in self-adaptation, as the
environment can be modelled with differential equations and the controller is discrete.

The majority of works have focused on using the MAPE-K loop to monitor its own behaviour, or
as a verified monitor for the managed system. Only few works have considered runtime verification
of the whole self-adaptive system as a means to provide additional safety guarantees.

6.4 Research Gaps
Based on the survey, we can identify a several research gaps and propose a roadmap to close them.

Monitoring. Figure 3 highlights that current work focusses on direct-feed analysis and some
limited work on filtered feeds, and on decentralised and distributed monitoring. Distribution of
monitoring tasks can gain more information about the environment by allowing the system to adapt
monitoring tasks based on the state of the system and of the environment. Another unexplored
direction is the introduction of an awareness in monitoring to improve autonomy. With this, the
system can adapt its own monitoring regarding the different properties and aspects that should be
monitored as well as the frequency and accuracy of such monitoring.

Analysis. The majority of current implementations of the analysis phase focus on anomaly
detection and data preprocessing with and without machine learning approaches as highlighted
in Section 4.2. While some work has been done incorporating uncertainty in the planning phase,

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 27

there seems to be little attention to consider uncertainty in the analysis phase. Future research
should explore uncertainty identification and uncertainty quantificatioin analysis.

Planning. Planning has received a lot of attention in the surveyed literature and, according to
our results (see Figure 3), covers mainly rule- and policy-based approaches, semantic reasoning,
optimizations, and machine learning techniques as outlined in Section 4.3. Similar to the Analysis
phase, the current implementations of the Planning phase are mostly based on predefined action
spaces. This limits the system’s ability to adapt to unforeseen situations. Future work should
focus on introducing novel approaches that allow the system to explore its own capabilities and
potentially adapt to new situations. This can be either by enabling the system to figure out new
capabilities when everything is working correctly and it is operating in a safe state, or by allowing
the system to explore new operations in situations that cannot worsen the state of the system. Both
reinforcement learning and generative artificial intelligence models are expected to play a crucial
part to explore the action space and generate new actions. With such approaches, novel planning
algorithms that can incorporate such exploration capabilities in its core are expected.

Execution. In Section 4.4, we highlight that Execution usually refers to the different steps of
the generated or selected plan from the planning phase. Recent work has expanded this with
verification techniques to ensure safety, highlighted by our research on the controlled execution
category in Figure 3. This is already a well-investigated topic within the formal methods and
verification community. Concerns not covered, however, are security risks, use of predictions and
what-if simulations, and distribution of execution tasks.

Knowledge. The discussed work on the Knowledge component in Section 4.5 covers areas such
as architectures, data representations, and knowledge evolution. A core element for future work
is considering the knowledge component beyond its use as data storage. Making independent
inference and generating actual knowledge, in contrast to only information [157], is a key step
towards a more autonomous system. Such step can be related to introducing computational [66]
and goalawareness. With such a capability, the system can reason about its own goals, select from
a set of goals, and even adapt or generate goals at runtime.

General. Taking into consideration the the interaction of different phases as highlighted in
Figure 4, it becomes apparent that there is little work on batch monitoring and its relation to the
other phases. This can help to improve the overall performance of the MAPE-K loop by allowing
for more efficient and effective monitoring. Adaptation of plan selection is another area with the
Analysis component that can receive more attention.

Finally, there is a lack of papers addressing synchronization between the different phases as they
can have different execution paces. For example, a direct-feed monitor may take significantly less
execution time than ML based Analyse or Plan. These differences can lead to bottlenecks for other
phases that need to sync with a rapidly evolving environment or managed system.

7 CONCLUSIONS
In this paper, we report on an extensive survey of the literature on MAPE-K loops. We have
identified five research questions (see Section 2), RQ1-5. The answers to RQ1 and RQ2 are given at
Section 4 and elaborated on Section 6.1. RQ3 is answered on Section 5 and Section 6.3. Section 3
covers the answer to RQ4. Finally, RQ5 is answered on Section 6.2.
Future work will need to update the survey and results as we go forward. We observe large

activity by the community, with an increasing ammount of papers being published every year. We
expect that new lessons and exciting results will be available in a few years.

, Vol. 1, No. 1, Article . Publication date: June 2025.



28 Isasa, et al.

ACKNOWLEDGMENTS
This work is supported by the RoboSAPIENS Project financed by the European Commission’s
Horizon Europe programme under Grant 101133807 (https://cordis.europa.eu/project/id/101133807).
The work of Ana Cavalcanti is funded by the Royal Academy of Engineering. The authors would
also like to thank Dr. Jalil Boudjadar, Prof. Anastasios Tefas and Mikkel Labori Olsen for their
thorough reviews.

REFERENCES
[1] Imen Abdennadher, Ismael Bouassida Rodriguez, and Mohamed Jmaiel. 2017. A Design Guideline for Adaptation

Decisions in the Autonomic Loop. Procedia Computer Science 112 (2017), 270–277.
[2] Imen Abdennadher, Ismael Bouassida Rodriguez, and Mohamed Jmaiel. 2016. An Overview of a Decision Approach

for Autonomic Applications Architectural Adaptation. In Proceedings of the International Conference on Smart City.
1095–1101.

[3] Frank José Affonso, Gustav Leite, Rafael A.P. Oliveira, and Elisa Yumi Nakagawa. 2015. A framework based on
learning techniques for decision-making in self-adaptive software. In Proceedings of the International Conference on
Software Engineering & Knowledge Engineering. 24–29.

[4] Oscar Aguayo and Samuel Sepúlveda. 2022. Variability Management in Dynamic Software Product Lines for Self-
Adaptive Systems—A Systematic Mapping. Applied Sciences 12, 20 (2022), 10240.

[5] Oscar Aguayo, Samuel Sepúlveda, and Raúl Mazo. 2024. Variability Management in Self-Adaptive Systems through
Deep Learning: A Dynamic Software Product Line Approach. Electronics 13, 5 (2024).

[6] Jose Aguilar, Alberto Garcés-Jiménez, Jose Manuel Gómez-Pulido, Maria Dolores Rodríguez Moreno, José Anto-
nio Gutiérrez De Mesa, and Nuria Gallego-Salvador. 2021. Autonomic Management of a Building’s Multi-HVAC
System Start-Up. IEEE Access 9 (2021), 70502–70515.

[7] Jose Aguilar, M. Jerez, M. Mendonça, and M. Sánchez. 2020. Performance analysis of the ubiquitous and emergent
properties of an autonomic reflective middleware for smart cities. Computing 102, 10 (2020), 2199–2228.

[8] O. Aissaoui, F. Atil, and A. Amirat. 2013. Towards a generic reconfigurable framework for self-adaptation of distributed
component-based application, Vol. 488. 399–408.

[9] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. 2017. Autonomic Vertical Elasticity of Docker
Containers with ELASTICDOCKER. In Proceedigns of the International Conference on Cloud Computing. 472–479.

[10] E. Albassam, H. Gomaa, and D.A. Menascé. 2017. Model-based recovery and adaptation connectors: Design and
experimentation, Vol. 743. 108–131.

[11] Emad Albassam, Jason Porter, Hassan Gomaa, and Daniel A. Menascé. 2017. DARE: A Distributed Adaptation and
Failure Recovery Framework for Software Systems. In Proceedings of the International Conference on Autonomic
Computing. 203–208.

[12] Elvin Alberts, Ilias Gerostathopoulos, Ivano Malavolta, Carlos Hernández Corbato, and Patricia Lago. 2025. Software
architecture-based self-adaptation in robotics. Journal of Systems and Software 219 (1 2025), 112258.

[13] Mubashir Ali. 2020. Big Data and Machine Intelligence in Software Platforms for Smart Cities. In Software Architecture,
Henry Muccini, Paris Avgeriou, Barbora Buhnova, Javier Camara, Mauro Caporuscio, Mirco Franzago, Anne Koziolek,
Patrizia Scandurra, Catia Trubiani, Danny Weyns, and Uwe Zdun (Eds.). 17–26.

[14] Nour Ali and Carlos Solis. 2015. Self-Adaptation to Mobile Resources in Service Oriented Architecture. In Proceedings
of the International Conference on Mobile Services.

[15] Andre Almeida, Everton Cavalcante, Thais Batista, Nelio Cacho, and Frederico Lopes. 2014. A Component-Based
Adaptation Approach for Multi-Cloud Applications. In Proceedings of the Conference on Computer Communications
Workshops. 49–54.

[16] Anne Marie Amja, Abdel Obaid, and Hafedh Mili. 2016. Combining Variability, RCA and Feature Model for Context-
Awareness. In Proceedings of the International Conference on Innovative Computing Technology. 15–23.

[17] Mohamed Amoud and Ounsa Roudies. 2016. MaPE-K-Based Approach for Security @ Runtime. In Proceedings of the
International Conference on Software Science, Technology and Engineering. 138–140.

[18] Mohamed Amoud and Ounsa Roudies. 2017. Using Combination of MAPE-K and DSPL to Secure Smart Camera
Networks. In Proceedings of the International Conference on Industrial Engineering and Operations Management.
2061–2070.

[19] Jesper Andersson, Rogerio De Lemos, Sam Malek, and Danny Weyns. 2009. Reflecting on self-adaptive software
systems. In 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems. IEEE, 38–47.

[20] Roberto O. Andrade and Sang Guun Yoo. 2019. Cognitive security: A comprehensive study of cognitive science in
cybersecurity. Journal of Information Security and Applications 48 (2019), 102352.

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 29

[21] Björn Annighöfer, Johannes Reinhart, Matthias Brunner, and Bernd Schulz. 2021. Requirements and Concept for a
Self-organizing Plug&Fly Avionics Platform. In Proceedings of the Digital Avionics Systems Conference. 1–10.

[22] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. 2015. Modeling and Analyzing MAPE-K Feedback Loops
for Self-Adaptation. In 2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. 13–23.

[23] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. 2017. Formal Design and Verification of Self-Adaptive
Systems with Decentralized Control. 11, 4 (2017), 1–35.

[24] Davide Arcelli. 2020. Towards a Generalized Queuing Network Model for Self-adaptive Software Systems. In
Proceedings of the International Conference on Model-Driven Engineering and Software Development. 457–464.

[25] Qazi Mamoon Ashraf, Mohammad Tahir, Mohamed Hadi Habaebi, and Jouni Isoaho. 2023. Toward Autonomic
Internet of Things: Recent Advances, Evaluation Criteria, and Future Research Directions. IEEE Internet of Things
Journal 10, 16 (2023), 14725–14748.

[26] Iman Azimi, Arman Anzanpour, Amir M. Rahmani, Tapio Pahikkala, Marco Levorato, Pasi Liljeberg, and Nikil Dutt.
2017. HiCH: Hierarchical fog-assisted computing architecture for healthcare IoT. ACM Transactions on Embedded
Computing Systems 16 (2017). Issue 5s.

[27] Maryam Bagheri, Marjan Sirjani, Ali Movaghar, and Edward A Lee. 2018. Coordinated actor model of self-adaptive
track-based traffic control systems. The Journal of Systems & Software 143, September 2017 (2018), 116–139.

[28] Ahmed Bali, Mahmud Al-Osta, Soufiene Ben Dahsen, and Abdelouahed Gherbi. 2020. Rule based auto-scalability of
IoT services for efficient edge device resource utilization. Journal of Ambient Intelligence and Humanized Computing
11, 12 (2020), 5895–5912.

[29] M. Baruwal Chhetri, H. Luong, A.V. Uzunov, Q.B. Vo, R. Kowalczyk, S. Nepal, and I. Rajapakse. 2018. ADSL: An
embedded domain-specific language for constraint-based distributed self-management. 101–110.

[30] Nelly Bencomo and Luis Hernan Garcia Paucar. 2019. RaM: Causally-Connected and Requirements-Aware Runtime
Models using Bayesian Learning. 216–226.

[31] Sree Ram Boyapati and Claudia Szabo. 2022. Self-adaptation in Microservice Architectures: A Case Study. In
Proceedings of the International Conference on Engineering of Complex Computer Systems. 42–51.

[32] Darko Bozhinoski, Mario Garzon Oviedo, Nadia Hammoudeh Garcia, Harshavardhan Deshpande, Gijs van der Hoorn,
Jon Tjerngren, Aandrzej Wąsowski, and Carlos Hernandez Corbato. 2022. MROS: runtime adaptation for robot control
architectures. Advanced Robotics 36, 11 (2022), 502–518.

[33] Thomas Brand and Holger Giese. 2018. Towards generic adaptive monitoring. In Proceedings of the International
Conference on Self-Adaptive and Self-Organizing Systems. 156–161.

[34] Melanie Brinkschulte, Christian Becker, and Christian Krupitzer. 2019. Towards a QoS-aware Cyber Physical
Networking Middleware Architecture. In Proceedings of the 1st International Workshop on Middleware for Lightweight,
Spontaneous Environments. 7–12.

[35] Rodney Brooks. 1986. A robust layered control system for a mobile robot. IEEE Journal on Robotics and Automation 2,
1 (1986), 14–23.

[36] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch Lafuente, and Andrea Vandin. 2012. A conceptual
framework for adaptation. Lecture Notes in Computer Science 7212 LNCS (2012), 240–254.

[37] Antonio Bucchiarone, Claudio Guidi, Ivan Lanese, Nelly Bencomo, and Josef Spillner. 2022. A MAPE-K Approach to
Autonomic Microservices. In Proceedings of the International Conference on Software Architecture Companion. 100–103.

[38] Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mirandola. 2012. Self-adaptive software needs
quantitative verification at runtime. Commun. ACM 55, 9 (9 2012), 69–77.

[39] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola, and Giordano Tamburrelli. 2011. Dynamic
QoS management and optimization in service-based systems. IEEE Transactions on Software Engineering 37, 3 (2011),
387–409.

[40] Miguel Camelo, Luca Cominardi, Marco Gramaglia, Marco Fiore, Andres Garcia-Saavedra, Lidia Fuentes, Danny
De Vleeschauwer, Paola Soto-Arenas, Nina Slamnik-Krijestorac, Joaquin Ballesteros, Chia-Yu Chang, Gabriele Bal-
doni, Johann M. Marquez-Barja, Peter Hellinckx, and Steven Latre. 2022. Requirements and Specifications for
the Orchestration of Network Intelligence in 6G. In Proceedings of the Consumer Communications and Networking
Conference.

[41] Matteo Camilli, Carlo Bellettini, and Lorenzo Capra. 2018. A high-level petri net-based formal model of Distributed
Self-adaptive Systems. In Proceedings of the European Conference on Software Architecture: Companion.

[42] Marc Carwehl, Calum Imrie, Thomas Vogel, Genaína Rodrigues, Radu Calinescu, and Lars Grunske. 2024. Formal
Synthesis of Uncertainty Reduction Controllers. In Proceedings of the 19th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. 2–13.

[43] Emiliano Casalicchio and Monica Palmirani. 2015. A Cloud Service Broker with Legal-Rule Compliance Checking
and Quality Assurance Capabilities. Procedia Computer Science 68 (2015), 136–150.

, Vol. 1, No. 1, Article . Publication date: June 2025.



30 Isasa, et al.

[44] Betty H C Cheng, East Lansing, Robert Jared Clark, East Lansing, Michael Austin Langford, and Philip K Mckinley.
2020. AC-ROS : Assurance Case Driven Adaptation for the Robot Operating System. In Proceedings of the International
Conference on Model Driven Engineering Languages and Systems. 102–113.

[45] Julián Cifuentes, Andrés Paz, and Hugo Arboleda. 2017. PISCIS: A constraint-based planner for self-adaptive systems.
In Advances in Computing, Andrés Solano and Hugo Ordoñez (Eds.), Vol. 735. 282–296.

[46] Edmund M Clarke and E Allen Emerson. 1981. Design and synthesis of synchronization skeletons using branching
time temporal logic. InWorkshop on logic of programs. Springer, 52–71.

[47] Louis Closson, Christophe Cerin, Didier Donsez, and Denis Trystram. 2022. Towards a Methodology for the Charac-
terization of IoT Data Sets of the Smart Building Sector. In Proceedings of the International Smart Cities Conference.
1–7.

[48] Jorge Luiz da Silva, Márcio Miranda Assis, Alexandre Braga, and Regina Moraes. 2019. Deploying privacy as a service
within a cloud-based framework. In 2019 9th Latin-American Symposium on Dependable Computing (LADC).

[49] Rafael Ferreira da Silva, Gideon Juve, Mats Rynge, Ewa Deelman, and Miron Livny. 2015. Online Task Resource
Consumption Prediction for Scientific Workflows. In Parallel Processing Letters, Vol. 25. 1541003.

[50] Thiago Pereira Da Silva, Aluizio F.Rocha Neto, Thais Vasconcelos Batista, Frederico A.S. Lopes, Flavia C. Delicato,
and Paulo F. Pires. 2021. Horizontal Auto-Scaling in Edge Computing Environment using Online Machine Learning.
In Proceedings of the International Conference on Dependable, Autonomic and Secure Computing. 161–168.

[51] Gabriella D’Andrea, Tania Di Mascio, and Giacomo Valente. 2019. Self-adaptive loop for CPSs: Is the Dynamic Partial
Reconfiguration profitable?. In Proceedings of the Mediterranean Conference on Embedded Computing. 1–5.

[52] Rustem Dautov, Dimitrios Kourtesis, Iraklis Paraskakis, and Mike Stannett. 2013. Addressing self-management in
cloud platforms: a semantic sensor web approach. 11–18.

[53] Alexandre David, Lasse Jacobsen, Morten Jacobsen, Kenneth Yrke Jørgensen, Mikael H. Møller, and Jiří Srba. 2012.
TAPAAL 2.0: Integrated Development Environment for Timed-Arc Petri Nets. In Tools and Algorithms for the Con-
struction and Analysis of Systems, Cormac Flanagan and Barbara König (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 492–497.

[54] Jim Davies and Jim Woodcock. 1996. Using Z: Specification Refinement and Proof.
[55] Alessandra De Benedictis, Francesco Flammini, Nicola Mazzocca, Alessandra Somma, and Francesco Vitale. 2023.

Digital Twins for Anomaly Detection in the Industrial Internet of Things: Conceptual Architecture and Proof-of-
Concept. IEEE Transactions on Industrial Informatics 19, 12 (2023), 11553–11563.

[56] Patrícia Deud Guimarães and Vânia Paula De Almeida Neris. 2024. A Tool-Supported Approach to Adapt Web User
Interfaces Considering the Emotional State of the User. In Proceedings of the Brazilian Symposium on Human Factors
in Computing Systems. Association for Computing Machinery, Article 30, 11 pages.

[57] Alhassan Boner Diallo, Hiroyuki Nakagawa, and Tatsuhiro Tsuchiya. 2021. Adaptation space reduction using an
explainable framework. In Proceedings of the Annual Computers, Software, and Applications Conference. 1653–1660.

[58] Martin Doran, Roy Sterritt, George Wilkie, and George Wilkie. 2020. Autonomic architecture for fault handling in
mobile robots. Innovations in Systems and Software Engineering 16, 3 (2020), 263–288.

[59] Manuel Dworzak, Marcel Großmann, and Duy Thanh Le. 2024. Federated Autonomous Orchestration in Fog
Computing Systems. In Proceedings of Eighth International Congress on Information and Communication Technology,
Xin-She Yang, R. Simon Sherratt, Nilanjan Dey, and Amit Joshi (Eds.). Singapore, 639–649.

[60] Ibrahim Elgendi, Md. Farhad Hossain, Abbas Jamalipour, and Kumudu S. Munasinghe. 2019. Protecting Cyber Physical
Systems Using a Learned MAPE-K Model. IEEE Access 7 (2019), 90954–90963.

[61] D. Elsayed, E. Nasr, A. El Ghazali, and M. Gheith. 2020. A self-healing model for qos-aware web service composition.
International Arab Journal of Information Technology 17, 6 (2020), 839–846.

[62] Doaa Elsayed, Eman Nasr, Alaa El Ghazali, and Mervat Gheith. 2020. A Self-Healing Model for QoS-aware Web
Service Composition. The International Arab Journal of Information Technology 17, 6 (11 2020), 839–846.

[63] Mahsa Emami-Taba, Mehdi Amoui, and Ladan Tahvildari. 2015. Strategy-Aware Mitigation Using Markov Games
for Dynamic Application-Layer Attacks. Proceedings of IEEE International Symposium on High Assurance Systems
Engineering 2015-Janua, January (2015), 134–141.

[64] Elif Eryilmaz, Frank Trollmann, and Sahin Albayrak. 2019. Quality-Aware Service Selection Approach for Adaptive
Context Recognition in IoT. In Proceedings of the International Conference on the Internet of Things (IoT ’19). Article 3,
8 pages.

[65] Lukas Esterle. 2018. Goal-Aware Team Affiliation in Collectives of Autonomous Robots. In Proceedings of the
International Conference on Self-Adaptive and Self-Organizing Systems. 90–99.

[66] Lukas Esterle and John N. A. Brown. 2020. I Think Therefore You Are: Models for Interaction in Collectives of
Self-aware Cyber-physical Systems. ACM Transactions on Cyber-Physical Systems 4, 4, Article 39 (jun 2020), 25 pages.

[67] Imane Ettahiri and Karim Doumi. [n. d.]. A Novel Dynamic Enterprise Architecture Model: Leveraging MAPE-K
Loop and Case-Based Reasoning for Context Awareness. 14, 2 ([n. d.]), 1875.

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 31

[68] Xinwei Fang, Radu Calinescu, Colin Paterson, and Julie Wilson. 2022. PRESTO: Predicting System-level Disruptions
through Parametric Model Checking. In Proceedings of the 17th Symposium on Software Engineering for Adaptive and
Self-Managing Systems. 91–97.

[69] Mohammad Faraji Mehmandar, Sam Jabbehdari, and Hamid Haj Seyyed Javadi. 2020. A dynamic fog service
provisioning approach for IoT applications. International Journal of Communication Systems 33, 14 (2020).

[70] Mohammad Faraji-Mehmandar, Sam Jabbehdari, and Hamid Haj Seyyed Javadi. 2023. Fuzzy Q-learning approach for
autonomic resource provisioning of IoT applications in fog computing environments. Journal of Ambient Intelligence
and Humanized Computing 14, 4 (2023), 4237–4255.

[71] Dawei Feng, Cécile Germain, and Julien Nauroy. 2015. Sequential fault monitoring. In Proceedings of the International
Conference on Cloud and Autonomic Computing. 25–34.

[72] Hao Feng, Cláudio Gomes, Santiago Gil, Peter H. Mikkelsen, Daniella Tola, Peter Gorm Larsen, and Michael Sandberg.
2022. Integration Of The Mape-K Loop In Digital Twins. In Proceedings of the Annual Modeling and Simulation
Conference. 102–113.

[73] Islam Gamal, Hala Abdel-Galil, and Atef Ghalwash. 2022. Osmotic Message-Oriented Middleware for Internet of
Things. Computers 11, 4 (2022).

[74] Angelo Gargantini, Paolo Arcaini, Patrizia Scandurra, and Silvia Bonfanti. [n. d.]. The ASMETA toolset website.
http://asmeta.sourceforge.net/. Accessed: 2024.

[75] Michael Georgeff, Barney Pell, Martha Pollack, Milind Tambe, and Michael Wooldridge. 1999. The Belief-Desire-
Intention Model of Agency. In Intelligent Agents V: Agents Theories, Architectures, and Languages, Jörg P. Müller,
Anand S. Rao, and Munindar P. Singh (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–10.

[76] Ilias Gerostathopoulos, Dominik Skoda, Frantisek Plasil, Tomas Bures, and Alessia Knauss. 2019. Tuning self-
adaptation in cyber-physical systems through architectural homeostasis. Journal of Systems and Software 148 (2019),
37–55.

[77] Sona Ghahremani, Christian M. Adriano, and Holger Giese. 2018. Training Prediction Models for Rule-Based
Self-Adaptive Systems. In Proceedings of the International Conference on Autonomic Computing. 187–192.

[78] Omid Gheibi and Danny Weyns. 2024. Dealing with Drift of Adaptation Spaces in Learning-based Self-Adaptive
Systems Using Lifelong Self-Adaptation. ACM Trans. Auton. Adapt. Syst. 19, 1, Article 5 (Feb. 2024), 57 pages.

[79] Omid Gheibi, Danny Weyns, and Federico Quin. 2021. Applying Machine Learning in Self-adaptive Systems. ACM
Transactions on Autonomous and Adaptive Systems 15, 3 (2021).

[80] Thomas Göthel, Nils Jähnig, and Simon Seif. 2017. Refinement-Based Modelling and Verification of Design Patterns
for Self-adaptive Systems. In Formal Methods and Software Engineering, Zhenhua Duan and Luke Ong (Eds.). 157–173.

[81] Marwa Hachicha, Riadh Ben Halima, and Ahmed Hadj Kacem. 2017. Design and timed verification of self-adaptive
systems. In Proceedings of the International Conference on Computer and Information Science. 227–232.

[82] Amira Hakim, Abdelkrim Amirat, and Mourad Chabane Oussalah. 2020. Non-intrusive contextual dynamic reconfig-
uration of ambient intelligent IoT systems. Journal of Ambient Intelligence and Humanized Computing 11, 4 (2020),
1365–1376.

[83] Maximilian Hoffmann, Lukas Malburg, and Ralph Bergmann. 2022. ProGAN: Toward a Framework for Process
Monitoring and Flexibility by Change via Generative Adversarial Networks. In Business Process ManagementWorkshops,
Andrea Marella and Barbara Weber (Eds.), Vol. 436 LNBIP. 43–55.

[84] Zhong-Sheng Hou and Zhuo Wang. 2013. From model-based control to data-driven control: Survey, classification and
perspective. Information Sciences 235 (2013), 3–35. Data-based Control, Decision, Scheduling and Fault Diagnostics.

[85] IBM. 2005. An architectural blueprint for autonomic computing. Technical Report.
[86] Usman M. Iftikhar and Danny Weyns. 2014. ActivFORMS: Active formal models for self-adaptation. In Proceedings of

the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. 125–134.
[87] Didac Gil De La Iglesia and Danny Weyns. [n. d.]. MAPE-K Formal Templates to Rigorously Design Behaviors for

Self-Adaptive Systems. 10, 3 ([n. d.]), 1–31.
[88] Lasse Jacobsen, Morten Jacobsen, Mikael H Møller, and Jiří Srba. 2011. Verification of timed-arc Petri nets. In SOFSEM

2011: Theory and Practice of Computer Science: 37th Conference on Current Trends in Theory and Practice of Computer
Science, Novỳ Smokovec, Slovakia, January 22-28, 2011. Proceedings 37. Springer, 46–72.

[89] Pooyan Jamshidi, Javier Cámara, Bradley Schmerl, Christian Käestner, and David Garlan. 2019. Machine Learning
Meets Quantitative Planning: Enabling Self-Adaptation in Autonomous Robots. In 2019 IEEE/ACM 14th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). 39–50.

[90] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wa̧sowski. 2019. Clafer: Lightweight Modeling of Structure, Behaviour, and Variability. Art, Science, and Engineering
of Programming 3, 1 (2019).

[91] Somayeh Kalantari, Eslam Nazemi, and Behrooz Masoumi. 2021. Emergence-based self-advising in strong self-
organizing systems: A case study in NASA ANTS mission. Expert Systems with Applications 182 (2021).

, Vol. 1, No. 1, Article . Publication date: June 2025.



32 Isasa, et al.

[92] Eduard Kamburjan, Crystal Chang Din, Rudolf Schlatte, S. Lizeth Tapia Tarifa, and Einar Broch Johnsen. 2022.
Twinning-by-Construction: Ensuring Correctness for Self-adaptive Digital Twins. In Leveraging Applications of Formal
Methods, Verification and Validation. Verification Principles, Tiziana Margaria and Bernhard Steffen (Eds.). 188–204.

[93] Burak Karaduman, Baris Tekin Tezel, and Moharram Challenger. 2022. Enhancing BDI Agents Using Fuzzy Logic for
CPS and IoT Interoperability Using the JaCa Platform. Symmetry 14, 7 (2022).

[94] Jeffrey O. Kephart and David M. Chess. 2003. The Vision of autonomic computing. Computer 36, 1 (2003), 41–50.
[95] Atif Ishaq Khan, Syed Asad Raza Kazmi, and Awais Qasim. 2023. Formal Modeling of Self-Adaptive Resource

Scheduling in Cloud. Computers, Materials and Continua 74, 1 (2023), 1183–1197.
[96] Reihaneh Khorsand, Mostafa Ghobaei-Arani, and Mohammadreza Ramezanpour. 2018. FAHP approach for autonomic

resource provisioning of multitier applications in cloud computing environments. Software: Practice and Experience
48, 12 (2018), 2147–2173. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2627

[97] R. Khorsand, M. Ghobaei-Arani, and M. Ramezanpour. 2018. FAHP approach for autonomic resource provisioning of
multitier applications in cloud computing environments. Software - Practice and Experience 48, 12 (2018), 2147–2173.

[98] Mira Kim and Jennifer Jin. 2022. Autonomous Sprinkler System with MAPE-K. In Proceedigns of the International
Conference on Computational Science and Computational Intelligence. 147–152.

[99] Barbara Kitchenham, Stuart Charters, et al. 2007. Guidelines for performing systematic literature reviews in software
engineering.

[100] Verena Klös, Thomas Göthel, and Sabine Glesner. 2015. Adaptive Knowledge Bases in Self-Adaptive System Design.
In Proceedings of the Conference on Software Engineering and Advanced Applications. 472 – 478.

[101] Verena Klös, Thomas Göthel, and Sabine Glesner. 2018. Comprehensible and dependable self-learning self-adaptive
systems. Journal of Systems Architecture 85-86 (2018), 28–42.

[102] Martin Koehler, Yuriy Kaniovskyi, and Siegfried Benkner. 2011. An adaptive framework for the execution of data-
intensive MapReduce applications in the Cloud. IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum (2011), 1122–1131.

[103] Max Korn, Philipp Chrszon, Sascha Klüppelholz, Christel Baier, and Sascha Wunderlich. 2023. Effectiveness of
Pre-computed Knowledge in Self-adaptation - A Robustness Study. In Computer Performance Engineering, Katja Gilly
and Nigel Thomas (Eds.), Vol. 13659 LNCS. 19–34.

[104] Samuel Kounev, Peter Lewis, Kirstie L. Bellman, Nelly Bencomo, Javier Camara, Ada Diaconescu, Lukas Esterle, Kurt
Geihs, Holger Giese, Sebastian Götz, Paola Inverardi, Jeffrey O. Kephart, and Andrea Zisman. 2017. The Notion of
Self-aware Computing. Springer International Publishing, 3–16.

[105] Christian Krupitzer, Felix Maximilian Roth, Sebastian Vansyckel, and Christian Becker. 2015. Towards reusability in
autonomic computing. In Proceedings of the International Conference on Autonomic Computing. 115–120.

[106] An Ngoc Lam and Oystein Haugen. 2018. Supporting IoT semantic interoperability with autonomic computing.
Proceedings - 2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018 (2018), 761–767.

[107] Peter G. Larsen, Shaukat Ali, Roland Behrens, Ana Cavalcanti, Claudio Gomes, Guoyuan Li, Paul De Meulenaere,
Mikkel L. Olsen, Nikolaos Passalis, Thomas Peyrucain, Jesús Tapia, Anastasios Tefas, and Houxiang Zhang. 2024.
Robotic safe adaptation in unprecedented situations: the RoboSAPIENS project. Research Directions: Cyber-Physical
Systems 2 (oct 2024), e4.

[108] Sabah Lecheheb, Soufiane Boulehouache, and Said Brahimi. 2022. Improving Self-Adaptation by Combining MAPE-K,
Machine and Deep Learning. In 2022 2nd International Conference on New Technologies of Information and Communi-
cation (NTIC). 1–6.

[109] Peter R. Lewis, Lukas Esterle, Arjun Chandra, Bernhard Rinner, Jim Torresen, and Xin Yao. 2015. Static, Dynamic,
and Adaptive Heterogeneity in Distributed Smart Camera Networks. ACM Transactions on Autonomous and Adaptive
Systems 10, 2 (June 2015), 1–30.

[110] Nianyu Li, Di Bai, Yiming Peng, Zhuoqun Yang, andWenpin Jiao. 2018. Verifying stochastic behaviors of decentralized
self-adaptive systems: A formal modeling and simulation based approach. In Proceedings of the International Conference
on Software Quality, Reliability and Security. IEEE, 67–74.

[111] M. Liess, J. Demicoli, T. Tiedje, M. Lohrmann, M. Nickel, M. Luniak, D. Prousalis, T. Wild, R. Tetzlaff, D. Göhringer, C.
Mayr, K. Bock, S. Steinhorst, and A. Herkersdorf. 2023. X-MAPE: Extending 6G-Connected Self-Adaptive Systems
with Reflexive Actions. In Proceedings of the Conference on Network Function Virtualization and Software Defined
Networks. 163–167.

[112] Yang Liu, Di Bai, and Wenpin Jiao. 2018. Generating Adaptation Rules of Software Systems: A Method Based on
Genetic Algorithm. In Proceedings of the International Conference on Machine Learning and Computing. 347–356.

[113] Shunan Ma and Yazhe Wang. [n. d.]. Self-Adaptive Access Control Model Based on Feedback Loop. In Proceedings of
the International Conference on Cloud Computing and Big Data. 597–602.

[114] Basel Magableh and Muder Almiani. 2020. A deep recurrent Q network towards self-adapting distributed microservice
architecture. Software - Practice and Experience 50, 2 (2020), 116–135. arXiv:1901.04011

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 33

[115] Lukas Malburg, Maximilian Hoffmann, and Ralph Bergmann. 2023. Applying MAPE-K control loops for adaptive
workflow management in smart factories. Journal of Intelligent Information Systems 61, 1 (2023), 83–111.

[116] Allen Marshall, Sharmin Jahan, and Rose Gamble. 2018. Toward evaluating the impact of self-adaptation on security
control certification. In Proceedings of the International Conference on Software Engineering for Adaptive and Self-
Managing Systems. 149–160.

[117] Nikolai Matni, Aaron D. Ames, and John C. Doyle. 2024. A Quantitative Framework for Layered Multirate Control:
Toward a Theory of Control Architecture. IEEE Control Systems Magazine 44, 3 (2024), 52–94.

[118] A. Mazidi, M. Golsorkhtabaramiri, and M.Y. Tabari. 2020. Autonomic resource provisioning for multilayer cloud
applications with K-nearest neighbor resource scaling and priority-based resource allocation. Software - Practice and
Experience 50, 8 (2020), 1600–1625.

[119] Arash Mazidi, Mehregan Mahdavi, and Fahimeh Roshanfar. 2021. An autonomic decision tree-based and deadline-
constraint resource provisioning in cloud applications. Concurrency and Computation: Practice and Experience 33, 10
(2021).

[120] JeremyMechouche, Roua Touihri, Mohamed Sellami, andWalid Gaaloul. 2022. Conformance checking for autonomous
multi-cloud SLA management and adaptation. Journal of Supercomputing 78, 11 (2022), 13004–13039.

[121] Mohammad Faraji Mehmandar, Sam Jabbehdari, and Hamid Haj Seyyed Javadi. 2020. A dynamic fog service
provisioning approach for IoT applications. International Journal of Communication Systems July (2020).

[122] Timo Müller, Simon Kamm, Andreas Löcklin, Dustin White, Marius Mellinger, Nasser Jazdi, and Michael Weyrich.
2022. Architecture and knowledge modelling for self-organized reconfiguration management of cyber-physical
production systems. International Journal of Computer Integrated Manufacturing 36, 12 (2022), 1842–1863.

[123] Negin Najafizadegan, Eslam Nazemi, and Vahid Khajehvand. 2021. An autonomous model for self-optimizing virtual
machine selection by learning automata in cloud environment. Software - Practice and Experience 51, 6 (2021),
1352–1386.

[124] Suneth Namal, Hasindu Gamaarachchi, Gyu MyoungLee, and Tai-Won Um. 2016. Autonomic trust management in
cloud-based and highly dynamic IoT applications. In 2015 ITU Kaleidoscope: Trust in the Information Society (K-2015).

[125] Nathalia Nascimento, Paulo Alencar, and Donald Cowan. [n. d.]. Self-Adaptive Large Language Model (LLM)-Based
Multiagent Systems. In Proceedings of the International Conference on Autonomic Computing and Self-Organizing
Systems Companion. 104–109.

[126] Mohammadreza Nazeri, Mohammadreza Soltanaghaei, and Reihaneh Khorsand. 2024. A predictive energy-aware
scheduling strategy for scientific workflows in fog computing. Expert Systems with Applications 247 (2024).

[127] Septimiu Nechifor, Dan Puiu, Bogdan Târnaucǎ, and Florin Moldoveanu. 2015. Autonomic Aspects of IoT Based
Systems: A Logistics Domain Scheduling Example. In Interoperability and Open-Source Solutions for the Internet of
Things, Ivana Podnar Žarko, Krešimir Pripužić, and Martin Serrano (Eds.). 153–168.

[128] Jesús Ortiz. 2023. Dealing with the evolution of event-based choreographies of BPMN fragments. In CEUR Workshop
Proceedings, Vol. 3618.

[129] Jesús Ortiz, Victoria Torres, and Pedro Valderas. 2023. Dealing with the Evolution of Event-Based Choreographies
of BPMN Fragments: Definition and Proof of Concept. In Proceedings of the International Conference on Conceptual
Modeling. 296–313.

[130] Selma Ouareth, Soufiane Boulehouache, and Smaine Mazouzi. 2021. An Approach for Composing Multiple Control
Loops Hierarchically. In Proceedings of the International Conference on Theoretical and Applicative Aspects of Computer
Science.

[131] Dimitrios Papamartzivanos, Félix Gómez Mármol, and Georgios Kambourakis. 2019. Introducing Deep Learning
Self-Adaptive Misuse Network Intrusion Detection Systems. IEEE Access 7 (2019), 13546–13560.

[132] Saeedeh Parsaeefard, Pooyan Habibi, and Alberto Leon Garcia. 2022. Towards Interaction and Conflict Management
in AI-assisted Operational Control Loops in 6G. In 2022 IEEE Future Networks World Forum (FNWF). 670–675.

[133] Alireza Parvizi-Mosaed, Shahrouz Moaven, Jafar Habibi, Ghazaleh Beigi, and Mahdieh Naser-Shariat. 2015. Towards
a self-adaptive service-oriented methodology based on extended SOMA. Frontiers of Information Technology and
Electronic Engineering 16, 1 (2015), 43–69.

[134] Martin Pfannemüller, Martin Breitbach, Christian Krupitzer, Markus Weckesser, Christian Becker, Bradley Schmerl,
and Andy Schurr. 2020. REACT: A model-based runtime environment for adapting communication systems. In
Proceedings of the International Conference on Autonomic Computing and Self-Organizing Systems. 65–74.

[135] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer Science
(sfcs 1977). 46–57.

[136] Francesco Poggi, Davide Rossi, Paolo Ciancarini, and Luca Bompani. 2016. An application of semantic technologies to
self adaptations. In 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging
a better tomorrow (RTSI).

, Vol. 1, No. 1, Article . Publication date: June 2025.



34 Isasa, et al.

[137] Jesús M T Portocarrero, Flavia C Delicato, Paulo F Pires, and Thais V Batista. 2014. Reference Architecture for
Self-adaptive Management in Wireless Sensor Networks. In Proceedings of the International Conference on Adaptive
and Intelligent Systems, A. Bouchachia (Ed.). 110–120.

[138] Laurin Prenzel and Sebastian Steinhorst. 2022. Towards Resilience by Self-Adaptation of Industrial Control Systems.
In Proceedings of the International Conference on Emerging Technologies and Factory Automation.

[139] Awais Qasim and Syed Asad Raza Kazmi. 2019. Formal modelling of real-time self-adaptive multi-agent systems.
Intelligent Automation and Soft Computing 25, 1 (2019), 49–63.

[140] Federico Quin, Danny Weyns, Thomas Bamelis, Singh Buttar Sarpreet, and Sam Michiels. 2019. Efficient analysis of
large adaptation spaces in self-adaptive systems using machine learning. In Proceedings of the International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, Vol. 2019-May. 1 – 12.

[141] Federico Quin, Danny Weyns, and Omid Gheibi. 2021. Decentralized Self-Adaptive Systems: A Mapping Study. In
2021 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). 18–29.

[142] Houda Rachidi and Ahmed Karmouch. 2011. A framework for self-configuring devices using TR-069. In Proceedings
of the International Conference on Multimedia Computing and Systems. 1–6.

[143] Anand S Rao and Michael P Georgeff. 1997. Modeling rational agents within a BDI-architecture. Readings in agents
(1997), 317–328.

[144] Vincenzo Riccio, Giancarlo Sorrentino, Matteo Camilli, Raffaela Mirandola, and Patrizia Scandurra. 2023. Engineering
Self-adaptive Microservice Applications: An Experience Report. In Service-Oriented Computing, Flavia Monti, Stefanie
Rinderle-Ma, Antonio Ruiz Cortés, Zibin Zheng, and Massimo Mecella (Eds.), Vol. 14419 LNCS. 227–242.

[145] A. W. Roscoe. 1997. The Theory and Practice of Concurrency. Prentice Hall PTR, USA.
[146] Eric Rutten, Nicolas Marchand, and Daniel Simon. 2017. Feedback control as MAPE-K loop in autonomic computing.

In Software Engineering for Self-Adaptive Systems III. Assurances, Rogério de Lemos, David Garlan, Carlo Ghezzi, and
Holger Giese (Eds.), Vol. 9640 LNCS. 349–373.

[147] Manuel Sanchez, Ernesto Exposito, and Jose Aguilar. 2020. Autonomic computing in manufacturing process coordi-
nation in industry 4.0 context. Journal of Industrial Information Integration 19, July (2020), 100159.

[148] Ronny Seiger, Stefan Herrmann, and Uwe Aßmann. 2017. Self-healing for distributed workflows in the internet of
things. In Proceedigns of the Conference on Software Architecture Workshops. 72–79.

[149] Ronny Seiger, Stefan Huber, Peter Heisig, and Uwe Aßmann. 2016. Enabling Self-adaptive Workflows for Cyber-
physical Systems. In Enterprise, Business-Process and Information Systems Modeling, Rainer Schmidt, Wided Guédria,
Ilia Bider, and Sérgio Guerreiro (Eds.). 3–17.

[150] Ronny Seiger, Stefan Huber, Peter Heisig, and Uwe Aßmann. 2019. Toward a framework for self-adaptive workflows
in cyber-physical systems. Software and Systems Modeling 18, 2 (2019), 1117–1134.

[151] Prasanth Senthilvelan, Jialong Li, and Kenji Tei. [n. d.]. Similarity-Based Shield Adaptation under Dynamic Envi-
ronment. In Proceedings of the International Conference on Software Engineering and Artificial Intelligence, Vol. 16.
33–39.

[152] Gustavo Rezende Silva, Juliane Päßler, Jeroen Zwanepol, Elvin Alberts, S. Lizeth Tapia Tarifa, Ilias Gerostathopoulos,
Einar Broch Johnsen, and Carlos Hernández Corbato. 2023. SUAVE: An Exemplar for Self-Adaptive Underwater
Vehicles. In Proceedings of the Symposium on Software Engineering for Adaptive and Self-Managing Systems. 181–187.

[153] Madhusudan Singh and Shiho Kim. 2017. Reconcile security requirements for intelligent vehicles. In Proceedings of
the International Conference on Control, Automation and Systems. 1646–1651.

[154] Jiyoung Song, Jeehoon Kang, Sangwon Hyun, Eunkyoung Jee, and Doo-Hwan Bae. 2022. Continuous verification
of system of systems with collaborative MAPE-K pattern and probability model slicing. Information and Software
Technology 147 (2022).

[155] P. Soto, M. Camelo, D. De Vleeschauwer, Y. De Bock, C.-Y. Chang, J.F. Botero, and S. Latre. 2023. Network Intelligence
for NFV Scaling in Closed-Loop Architectures. IEEE Communications Magazine 61, 6 (2023), 66–72.

[156] Carlos H. R. Souza, Saulo S. De Oliveira, Luciana O. Berretta, and Sergio T. de Carvalho. 2024. DDA-MAPEKit: A
Framework for Dynamic Difficulty Adjustment Based on MAPE-K Loop. In Proceedings of the Brazilian Symposium
on Games and Digital Entertainment. 1–10.

[157] Dick Stenmark. 2001. The relationship between information and knowledge. In Proceedings of IRIS, Vol. 24. 11–14.
[158] Mahsa Teimourikia and Mariagrazia Fugini. 2016. Ontology development for run-time safety management methodol-

ogy in Smart Work Environments using ambient knowledge. Future Generation Computer Systems (2016).
[159] Dirk Thomas, William Woodall, and Esteve Fernández. 2014. Next-generation ROS: Building on DDS. https:

//api.semanticscholar.org/CorpusID:218740227
[160] Benoit Tremblay, Karol Kozubal, Wubin Li, and Chakri Padala. 2016. A Workload Aware Storage Platform for large

scale computing environments: Key challenges and proposed directions. In Proceedings of the ACM 7th Workshop on
Scientific Cloud Computing. 27–33.

, Vol. 1, No. 1, Article . Publication date: June 2025.



MAPE-K SotA 35

[161] Geetha Lekshmy V, Amal S Pillai, and Arun Raj. 2022. Modeling & Verification of an Adaptive IoT System using
Uppaal. In Proceedings of the Global Conference for Advancement in Technology.

[162] Felipe Volpato, Madalena Pereira Da Silva, Alexandre Leopoldo Goncalves, and Mario Antonio Ribeiro Dantas.
2017. An autonomic QoE-aware management architecture for software-defined networking. In Proceedings of the
International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises. 220–225.

[163] DannyWeyns. 2019. Software engineering of self-adaptive systems. Handbook of software engineering (2019), 399–443.
[164] Danny Weyns and Tanvir Ahmad. 2013. Claims and Evidence for Architecture-Based Self-adaptation: A Systematic

Literature Review. In Software Architecture, Khalil Drira (Ed.). 249–265.
[165] Danny Weyns and Usman M. Iftikhar. 2023. ActivFORMS: A Formally Founded Model-based Approach to Engineer

Self-adaptive Systems. ACM Transactions on Software Engineering and Methodology 32, 1 (2023).
[166] Danny Weyns, Sam Malek, and Jesper Andersson. 2012. FORMS: Unifying reference model for formal specification of

distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 7, 1, Article 8 (5 2012), 61 pages.
[167] Michael Weyrich and Christof Ebert. 2016. Reference architectures for the internet of things. IEEE Software 33, 1

(2016), 112 – 116.
[168] Thomas Wright, Cláudio Gomes, and Jim Woodcock. 2022. Formally Verified Self-adaptation of an Incubator Digital

Twin. In Leveraging Applications of Formal Methods, Verification and Validation. Practice, Tiziana Margaria and
Bernhard Steffen (Eds.). 89–109.

[169] Mahendra Pratap Yadav, Rohit, and Dharmendra Kumar Yadav. 2021. Maintaining container sustainability through
machine learning. Cluster Computing 24, 4 (2021), 3725–3750.

[170] Kamaleddin Yaghoobirafi and Ali Farahani. 2022. An approach for semantic interoperability in autonomic distributed
intelligent systems. Journal of Software: Evolution and Process 34 (2 2022).

[171] Wenhua Yang, Chang Xu, Yepang Liu, Chun Cao, Xiaoxing Ma, and Jian Lu. 2014. Verifying self-adaptive applications
suffering uncertainty. Proceedings of the International Conference on Automated Software Engineering (2014), 199 –
209.

[172] Zhiyong Ye, Yang Wang, Shuibing He, Chengzhong Xu, and Xian-He Sun. 2021. Sova: A software-defined autonomic
framework for virtual network allocations. IEEE Transactions on Parallel and Distributed Systems 32, 1 (2021), 116–130.

[173] Ji Zhang and Betty HC Cheng. 2006. Using temporal logic to specify adaptive program semantics. Journal of Systems
and Software 79, 10 (2006), 1361–1369.

[174] Tianqi Zhao, Wei Zhang, Haiyan Zhao, and Zhi Jin. 2017. A Reinforcement Learning-Based Framework for the
Generation and Evolution of Adaptation Rules. In Proceedings of the International Conference on Autonomic Computing).
103–112.

[175] Yongwang Zhao, Dianfu Ma, Jing Li, and Zhuqing Li. 2011. Model Checking of Adaptive Programs with Mode-
extended Linear Temporal Logic. In Proceedings of the International Conference and Workshops on Engineering of
Autonomic and Autonomous Systems. 40–48. ISSN: 2168-1872.

[176] Naweiluo Zhou, Gwenaël Delaval, Bogdan Robu, Éric Rutten, and Jean François Méhaut. 2018. An autonomic-
computing approach on mapping threads to multi-cores for software transactional memory. Concurrency and
Computation: Practice and Experience 30, 18 (2018), 1–21.

[177] Parisa Zoghi, Mark Shtern, Marin Litoiu, and Hamoun Ghanbari. 2016. Designing Adaptive Applications Deployed
on Cloud Environments. ACM Transactions on Autonomous and Adaptive Systems 10, 4 (2016), 1–16.

[178] Abdellah Zyane, Mohamed Nabil Bahiri, and Abdelilah Ghammaz. 2020. IoTScal-H : Hybrid monitoring solution
based on cloud computing for autonomic middleware-level scalability management within IoT systems and different
SLA traffic requirements. International Journal of Communication Systems 33, 14 (2020), 1–23.

, Vol. 1, No. 1, Article . Publication date: June 2025.



D3.2 - Monitorable and trustworthy verification loops (Public Document)

A.2 Runtime Verification of Autonomous Systems utilizing Digital
Twins as a Service

The appended paper follows.

69



Runtime Verification of Autonomous Systems
utilizing Digital Twins as a Service

Morten Haahr Kristensen∗, Alberto Bonizzi†, Cláudio Gomes∗, Simon Thrane Hansen‡, Carlos Isasa∗,
Hannes Iven§, Eduard Kamburjan¶, Peter Gorm Larsen∗, Martin Leucker§, Prasad Talasila∗,

Valdemar Trøjgård Tang∗, Stefano Tonetta†, Lars B. Vosteen§, Thomas Wright∗
∗Department of Electrical and Computer Engineering

Aarhus University, Denmark
{mhk, claudio.gomes, cisasa, pgl, prasad.talasila, valdemar.tang, thomas.wright}@ece.au.dk

†Fondazione Bruno Kessler, Italy
{bonizzi,tonettas}@fbk.eu

‡Interdisciplinary Centre for Security, Reliability and Trust
University of Luxembourg

simon.hansen@uni.lu
§Institute for Software Engineering and Programming Languages

Universität zu Lübeck, Germany
hannes.iven@student.uni-luebeck.de, {leucker,vosteen}@isp.uni-luebeck.de

¶Department of Informatics
University of Oslo, Norway

eduard@ifi.uio.no

Abstract—Autonomous Systems (AS) enable systems to adapt
to drastic and unprecedented environmental changes, a capability
that can be enhanced through the utilization of Digital Twins
(DTs). However, the additional capabilities of AS come at the cost
of explainability, as the expanding adaptation space complicates
the reasoning about the system’s behavior. For certain types
of systems, it is crucial to ensure that specific properties are
upheld despite the system’s autonomous behavior. To facilitate
the monitoring of these properties, we propose the use of Runtime
Verification (RV). This tutorial demonstrates the integration of
RV tools into the Digital Twins as a Service (DTaaS) platform to
monitor and verify the behavior of AS in real-time. By exploring
various methods to incorporate RV tools within a DT context, the
tutorial aims to advance the application of RV technologies in au-
tonomic computing and self-adaptive system design. Specifically,
we demonstrate how the behavior of a self-configuring DT can
be verified utilizing RV. This is accomplished through the DTaaS
platform, which supports seamless deployment of DT-based AS.

Index Terms—Self-adaptivity, runtime verification, digital
twins, monitor, TeSSLa, NuRV

I. INTRODUCTION

The vision of autonomic computing inspired new ap-
proaches to designing flexible Autonomous Systems (AS)
capable of adapting to dynamic environments [14]. Initially,
research on AS primarily focused on reducing the complexity
of large-scale software systems, which often comprise tens of

The work presented here is partially supported by the RoboSAPIENS
project funded by the European Commission’s Horizon Europe programme
under grant agreement number 101133807, the O5G-N-IoT project, funded by
the German Federal Ministry for Economic Affairs and Climate Action, due
to a resolution of the German Bundestag, and the SM4RTENANCE project
under grant no. 101123423.

millions of lines of code, particularly within purely software-
based environments such as cloud computing. Since then, the
field has advanced significantly, extending its concepts to new
domains including dynamic software architectures [1], robotics
[4], business process management (BPM) [16], and cyber-
security [17]. However, the increasing level of adaptability
makes the verification of such systems significantly more chal-
lenging. For instance, within the domain of robotics, there is a
critical need for flexible self-adaptive robots that can operate
reliably despite dynamic environmental changes. Nevertheless,
the safety of human life must never be compromised, and
ensuring that these robots adhere to safety standards despite
their self-adaptivity remains an ongoing challenge. Research
addressing these challenges, such as [4] and [13], involves
formulating and validating the adherence to requirements at
runtime. Similar requirements for continuous monitoring of
system properties are present in other domains utilizing AS.
Within this context, self-adaptivity can be considered as a
component that increases the possible behaviors of the system,
while Runtime Verification (RV) serves as the component that
excludes unwanted behaviors.

The purpose of the tutorial is to demonstrate how re-
searchers within the AS community can utilize RV tools within
their work to ensure the correctness of their systems. In doing
so, emphasis is placed on the different ways that RV tools
can be integrated within a deployment platform and utilized
by the existing system. Through this process, we aim that
attendees will become familiar with how monitoring services
are deployed, as well as gain practical insight into how to build
them. The tutorial adopts a hands-on approach, utilizing the



Incubator case study [9], [10], which features a Digital Twin
(DT) capable of self-configuring during anomalous situations.
Although the tutorial is presented within the context of a DT,
the majority of the concepts discussed extend beyond this
specific application. Through the Incubator, we explore five
different scenarios for integrating an RV tool within an existing
AS, all of which are deployed on the Digital Twin as a Service
(DTaaS) platform (detailed in Section II).

The tutorial is structured as follows: Section II introduces
the main background concepts for following the tutorial. Then
Section III presents five examples showcasing the implementa-
tion of monitoring using two different RV frameworks. Finally,
Section IV concludes the tutorial.

II. BACKGROUND

A. Runtime Verification

RV is a lightweight method of improving the integrity
of deployed systems by extending a system with additional
monitoring functionality to avoid unintended behavior at run-
time. This is accomplished through a variety of monitoring
techniques, which check whether a system conforms to a
specification based on traces or streams of data from the
running system.

A wide range of RV methods have been developed over the
years, offering a variety of different specification languages
for expressing the desired behavior of the system including
temporal logics such as Linear Temporal Logic (LTL) [18] and
Signal Temporal Logic (STL) [7] as well as domain-specific
languages such as TeSSLa [6].

RV encompasses both passive monitoring techniques which
focus on detecting errors without changing the behavior of
the system, as well as more active techniques (also known as
runtime enforcement [8]) which aim to block or correct bad
behaviors.

B. NuRV

NuRV [5]1 is an extension of the nuXmv model checker
for assumption-based LTL RV with partial observability and
resets. Monitoring formulas are specified in LTL while as-
sumptions are specified in SMV. Thanks to the assumption, the
output of the monitor can be conclusive even in cases where
the formula contains future operators or if not all variables are
observable.

The tool provides commands for online/offline monitoring
and code generation into standalone monitor code. Using
the online/offline monitor, LTL properties can be verified
incrementally on finite traces from the system under scrutiny.
The code generation currently supports C, C++, Common
Lisp, and Java, and is extensible. Furthermore, from the same
internal monitor automaton, the monitor can be generated into
SMV modules, whose characteristics can be verified by Model
Checking using nuXmv.

1https://nurv.fbk.eu

C. TeSSLa

The Temporal Stream-based Specification Language
(TeSSLa) [6] framework2 combines a language and a suite of
tools designed for real-time verification of systems through
data stream analysis. TeSSLa allows the declaration of input
data types and the transformation of this data into new,
derived streams by applying a series of defined operations.
This approach enables effective monitoring of complex
systems, ensuring accurate tracking and analysis without
overly complex processes.

TeSSLa provides extensive libraries and supports the cre-
ation of macros. These macros allow users to define custom
operations, simplifying the specification of complex behaviors
and increasing the accessibility of the language. TeSSLa also
supports the generation of detailed output streams, including
statistical data with precise event timestamps, and allows
integration with monitoring tools developed in modern pro-
gramming languages such as Rust and Scala. Its integration
with the metrics collection agent Telegraf [21] contributes
to its effectiveness in real-world applications. At its core,
TeSSLa’s strength lies in its ability to map input data to
meaningful outputs, which is essential for real-time system
monitoring and informed decision-making in areas such as
DT technologies.

D. Digital Twins as a Service

The DTaaS3 platform is a collaborative platform to build,
use, and share DTs. It is based-off a microservices architec-
ture with dedicated software containers4 for DT assets, user
workspaces, platform services, a front-end website, and service
router.

One of the architectural principles used in the development
of DTaaS is to conceive DTs as composed of reusable assets,
which separate the functionality into their constituent parts.
Within DTaaS, data, models [23], tools [19], services [20] and
ready to use DTs [2] have been identified as reusable assets.
The DT Assets software container provides an interface to
perform create, reuse, update, and delete operations on the
reusable stored within the DTaaS.

Users utilizing DTaaS have private workspaces in which
they can build and use systems, from where they can access
assets as a regular part of the filesystem. All workspaces have
internet access thereby enabling the integration of DTs running
inside workspaces with external software systems.

Out-of-the-box, DTaaS supports multiple commonly used
services across DTs and users. The most commonly used
are RabbitMQ and MQTT (communication), InfluxDB and
MongoDB (data storage), and Grafana (data visualization).
Additionally, it is possible to host private services accessible
to a selected number of users. These services include the run-
time services provided by TeSSLa and NuRV.

2https://tessla.io
3https://github.com/INTO-CPS-Association/DTaaS
4Container is a software component at level-2 of the C4 model.



E. FMI-based Co-simulation

Integrating verification methods early in development en-
sures system correctness from the start [22]. One approach is
co-simulation, which combines multiple simulation tools into a
single simulation [12], [15]. Co-simulation is crucial for mod-
eling complex systems co-developed by multiple organizations
and systems whose complexity transcends the capabilities of
any single simulation tool.

Interoperability between heterogeneous simulation tools is
achieved using Functional Mock-up Units (FMUs) defined
by the Functional Mock-up Interface (FMI) standard [3]. An
FMU encapsulates the behavior of a dynamic system, whose
state evolves according to evolution rules and external stimuli,
into a discrete trajectory. This allows complex behaviors to be
represented modularly while protecting intellectual property.

Multiple FMUs are composed into a scenario by coupling
their input and output ports to represent the behavior of a
complex system. A coupling signifies that the state of one
FMU (the output) directly influences the state of another
(the input). A scenario is simulated using a co-simulation
framework that interacts with the FMUs through their interface
to advance them in lockstep and exchange values between the
coupled ports.

III. EXAMPLE INTEGRATIONS

Five examples showcasing the RV integration into the AS
are presented below: three utilizing NuRV and two utilizing
TeSSLa. For NuRV, the first example demonstrates a scenario
where the components of a self-adaptive DT are validated
before the system is deployed. This involves exporting the
NuRV specification as an FMU and conducting co-simulations
with the other components of the system. In the second
example, the reusability of the FMU within a service-oriented
architecture is demonstrated, enabling RV on the deployed
system. It listens to real-time sensing data sent by the Physical
Twin (PT), i.e., the physical counterpart of the system, through
RabbitMQ to the DT, evaluating the truth value of LTL
formulas. In the third example, the NuRV specification is
deployed on a standalone server, with its services exposed
to the DT. As a result, it is uncoupled from the DT instance.
For TeSSLa, the two examples demonstrate passive and active
monitoring. In passive monitoring, an alarm is raised in the
event of a violation of the monitored conditions. In contrast,
active monitoring entails altering the system’s behavior if a
monitored condition is falsified.

A. The Incubator

The different ways of integrating RV monitors are show-
cased using the Incubator system described in [11]. The
objective of the Incubator is to keep the temperature inside
a box close to a target temperature, a task that can be difficult
to achieve when more sophisticated scenarios, such as the
possibility of someone opening the lid or the object inside
the box releasing heat, are considered. These considerations
have led to the development of a DT [9], which consists of
a dynamical model of the physical components of the PT

and software components capturing its controller behavior.
Additionally, the DT contains a self-adaptation service that
reacts to possible changes in the environment and adjusts
the Incubator’s objective as necessary. In order to do this, a
Kalman filter estimates the state of the system and compares it
to the empirical data from the sensors. As soon as a deviation
is detected, the DT looks at historical data to identify the
anomaly and plan accordingly.

The self-adaptation service is divided into two different
services: anomaly detection, which handles detecting the dif-
ference between the expected temperatures and the sensed
temperatures, and energy saving, which changes the target
temperature to a lower one in case the anomaly detection
service has detected an opening of the lid. An overview of the
interaction of these services and the PT can be seen in Fig. 1.
The runtime monitoring property that is used throughout
the examples, ensures the correct combined behavior of the
anomaly detection and energy saver blocks. The STL property
can be seen below:

□(A =⇒ ♢[0,3]S) (1)

where A stands for the anomaly detection service detecting the
opening of the lid and S stands for the energy saver service
changing the target temperature. It can roughly be translated
into: “It must always hold that if an anomaly is detected then
energy saver is started within 3 seconds”.

Kalman Filter

 PT state 

Anomaly Detection

Energy Saver Runtime Verification

 Predicted state 

Anomaly detected Anomaly detected 

 Configuration 

 Configuration 

 PT state  Digital Twin

Physical Twin

Fig. 1: High-level overview of the DT components relevant to
the examples below. Arrows indicate RabbitMQ messages and
associated data.

B. NuRV FMU monitor

NuRV provides the capability to export runtime monitors
as standalone FMU components. This feature enables users to
easily interface monitors within custom applications using a
variety of libraries that support the FMU standard. This section
outlines how to utilize these FMU monitors to perform an
early validation of the internal components of the Incubator
before its deployment. Specifically, it is shown how to validate
the energy saver and anomaly detection components using an
FMU monitor.



1) Monitor definition and integration: The monitor is de-
fined by the SMV model seen in Fig. 2. This model specifies a
safety LTL property: Whenever an anomaly occurs, the system
should reconfigure itself and enter energy-saving mode within
a maximum of 3 time steps. The output of this monitor can
be a final verdict of either true or false, or unknown if there
is insufficient information to reach a definitive conclusion.

MODULE main
VAR

anomaly : boolean;
energy_saving : boolean;

LTLSPEC -- Safety
G (anomaly -> F [ 0, 3 ] energy_saving)

Fig. 2: NuRV monitor model

2) Simulation environment: For the validation process, a
simulation environment was established comprising several
components (depicted in Fig. 3): the energy saver and
anomaly detection components, each encapsulated within dis-
tinct FMUs, along with the NuRV monitor, exported by NuRV
using the specification in Fig. 2. The input data for the simu-
lation is generated by a purpose-built FMU component named
source, which supplies testing data, simulating an anomaly
occurring at time t=60s. A final component, watcher, is
employed to verify whether the energy saver activates in
response to an anomaly reported by the anomaly detector. The
FMUs for the energy saver and anomaly detector were con-
structed packaging their Python code using unifmu5, while
the source and watcher components were generated using
OpenModelica6. maestro7 served as the co-simulation
engine.

Source Anomaly
Detector

kalman_input

sensor

Energy
Saver Watcher NuRV FMU

Monitor
desired_temp

lid_open

enabled

energy_saving

Fig. 3: Simulation architecture of components and their ex-
changed signals

3) Simulation creation and execution: The setup of the
simulation is automatically performed through the create
script, which installs the required dependencies and compiles
the monitor from its specification model. The simulation is

5https://github.com/INTO-CPS-Association/unifmu
6https://openmodelica.org/
7https://github.com/INTO-CPS-Association/maestro

initiated using the DTaaS execute script, which also starts
the maestro co-simulation engine to simulate the system.
Given the characteristics of the FMU monitor exported by
NuRV, each invocation of the doStep function corresponds to
a logical heartbeat of the monitor. Consequently, this allows
the monitor to assess the current values of its inputs and
determine the appropriate outcome, thus providing validation
of the system.

C. NuRV FMU service monitor

It is not possible to directly integrate the NuRV FMU
monitor with the deployed Incubator. However, by imple-
menting straightforward wrapper logic, it becomes viable to
expose the FMU as an internal service, thereby enabling
its utilization within the system. Theoretically, automating
this process could be achieved through the development of
a dedicated tool; however, no such tool currently exists to
the authors’ knowledge. For the purposes of this tutorial, a
Python-based prototype has been developed to demonstrate
the potential functionality of such a tool. It is important to
underscore that this solution serves as a prototype only, and
certain challenges, such as fault tolerance, remain unaddressed.

DTaaS Platform
Physical Twin

Digital Twin            

RabbitMQ Server
(platform service)

Internal Service

Python 
rabbitmq-fmpy NuRV FMU

User Workspace

Other DT
Assets

Fig. 4: Overview of components involved with the NuRV
FMU service monitor. Notice that rabbitmq and fmpy are
libraries.

1) Overview: As depicted in Fig. 4, the tool leverages
the Python libraries rabbitmq8 and fmpy9, to realize its
functionality. rabbitmq facilitates subscription to the Rab-
bitMQ topics that are relevant for the monitor. fmpy enables
the simulation of an FMU within Python, allowing the in-
troduction of custom logic between each simulation step. In
conjunction, this tool orchestrates its operations such that upon
the occurrence of a new message on a RabbitMQ topic, the
internal state of the Python program is updated, and the signals
are subsequently forwarded to the FMU monitor, resulting in
the generation of a new verdict.
Given the reuse of the FMU, the NuRV specification remains
identical to the one outlined previously.

2) Creation, execution, and termination: As an extension
of the configuration provided in Section III-B, the prerequisites
are a superset of those previously outlined. Additionally, the
Python libraries fmpy and rabbitmq must be installed. As a
consequence, the create script fulfills the same function as

8https://pypi.org/project/rabbitmq/
9https://pypi.org/project/FMPy/



described above, while also installing the requisite additional
Python libraries.
In this configuration of the Incubator, an additional service
in the form of the RV monitor is initiated concurrently with
the DT. Given that the monitor is deployed as an internal
service, it becomes the responsibility of the DT to manage the
monitor, thereby intertwining their lifecycles. Consequently,
the execute script commences the DT as usual but with the
inclusion of starting the monitor. This enables the continuous
monitoring of the anomaly detection and energy saving blocks,
facilitating their verification at runtime.

D. NuRV ORBit2 monitor

Alternatively, NuRV can also be deployed as a standalone
monitoring server service accessible to the DT. Consequently,
the NuRV monitor and DT operate independently with their
lifecycles entirely decoupled. This section delineates the steps
to achieve this with the incubator.

1) NuRV monitor server: NuRV supports a network-based
monitoring server mode: from the interactive shell mode,
NuRV can enter with a command into a network listening
state. This enables user code to remotely execute the heartbeat
command for online monitoring. In server mode, NuRV can
accommodate multiple clients connecting to multiple servers.
In this context, each monitor server refers to a running
NuRV process where numerous LTL properties are incorpo-
rated alongside their respective runtime monitors, established
through the build_monitor command. It should be empha-
sized that a single NuRV process has the capacity to administer
multiple monitors, each tailored to different LTL properties.

2) Monitor integration: The process of connecting the
monitor server to the DT of the incubator is automated by
the execute script. This script, in turn, employs a Python
script file, that initially launches the omniNames CORBA
Name Service utility from the omniORB toolset, followed by
starting the NuRV_orbit version of NuRV. Subsequently, a
connection is established with the monitor server using the
omniORB Python library. Once this connection is established,
the Python script starts the incubator DT and subscribes to
relevant RabbitMQ topics such as energy saver status and lid
open status. The lid open status is mapped to the anomaly for
the NuRV monitor.
Figure 5 shows the architecture of the system comprising the
incubator DT and the NuRV monitoring server. Upon receiving

DTaaS Platform
Physical Twin

Digital Twin            

RabbitMQ Server
(platform service)

External Service

NuRV-Client
RabbitMQ-Client NuRV

User Workspace

Other DT
Assets

CORBA

Fig. 5: Overview of components involved with the NuRV
ORBit2 monitor.

DTaaS Platform
Physical Twin

Digital Twin

RabbitMQ Server
(platform service)

External Service

Telegraf TeSSLa

User Workspace

Connector

Fig. 6: Overview of components involved with the TeSSLA
passive and active monitors.

a message, the DT’s status is relayed to NuRV via a heartbeat
operation call through the CORBA interface. NuRV responds
to this heartbeat by providing the monitor’s output. If the
monitor’s output represents a final verdict, the monitor is reset
to prepare for its utilisation for the subsequent execution of
the DT.

E. TeSSLa passive monitor

As an alternative to NuRV, the RV tool TeSSLa can be
utilized for monitoring the AS properties. Similar to the
example presented in [21], the monitor consists of three parts
(see Fig. 6). At its core, the TeSSLa monitor processes input
streams and produces output streams, but is not itself capable
of integrating them into a larger system context. A helper
function (Connector) is compiled to handle the streams by
connecting TeSSLa streams to sockets with which external
tools can interact. Telegraf provides an additional layer of
flexibility by adding:

• reconfigurability at runtime – the service can be con-
figured to automatically adapt to a changing configura-
tion file using the --watch-config flag, or simply
restarted without losing the internal state of the monitor,

• data aggregation with basic statistical operations (such as
count, mean, min or histograms),

• stream processing for filtering or transforming data
streams, and

• by providing more than 200 integrations with different
services and protocols to send or receive streams10.

The create script prepares the system by ensuring that the
necessary tools and software are installed and configured. It
installs Java, Rust and Telegraf on the system and downloads
the necessary files for the TeSSLa-Telegraf Connector11. Two
files, a TeSSLa specification and a Telegraf configuration, must
be provided by the user.

A TeSSLa specification suitable for this scenario (shown
in Fig. 7) monitors two key states of the Incubator: whether
the lid is open and whether the energy saving mode is used,
which are passed to the TeSSLa monitor via different event
streams. The helper function raisingDelay delays any
change from false to true by three time steps without
affecting changes from true to false. This function

10https://docs.influxdata.com/telegraf/v1/plugins/
11https://git.tessla.io/telegraf/tessla-telegraf-connector/-/blob/master/

Release/tessla-telegraf-connector.zip



is used to define an internal data stream critical that
represents when the energy saving mode is expected to be
active. If it is not, an alert stream is set to true. This
stream is sent back to the system. The @TelegrafIn
and @TelegrafOut annotations allow the compiler to
automatically create the Connector function and add to the
Telegraf configuration. The Telegraf configuration consists of

include "./Telegraf.tessla"

@TelegrafIn("amqp_consumer","host=<hostname>",
"lid_open")↪→

in lid_open: Events[Bool]

@TelegrafIn("amqp_consumer","host=<hostname>",
"energy_saver_on")↪→

in energy_saver: Events[Bool]

def delayedOpen = raisingDelay(lid_open, 3)
def critical = lid_open && delayedOpen
def alert = critical && !energy_saver

@TelegrafOut("alert")
out alert

def raisingDelay(e: Events[Bool], d: Int):
Events[Bool] = merge3(false, const(true,

delay(const(d, boolFilter(e)), e)),
const(false, falling(e)))

↪→

↪→

Fig. 7: a TeSSLa specification for the passive monitor

two parts – where to connect to external data sources and
sinks (RabbitMQ in this case), and how to connect to the
TeSSLa monitor. The first has to be specified manually, as it
depends on the specific case. Here it configures the AMQP
plugin to connect to the RabbitMQ server, subscribe to the
topics incubator.diagnosis.plant.lidopen
as well as incubator.energysaver.status
and publish the monitor verdict to the topic
incubator.energysaver.alert.

The execute script uses the following command to add
the configuration of how to communicate with the TeSSLa
monitor to the supplied Telegraf configuration, create and run
the Connector helper function, and compile as well as run the
monitor.

./TesslaTelegrafConnector -i
./incubator.tessla -c ./telegraf.conf -r↪→

Fig. 8: Command used within execute lifecycle script.

The script then starts the Telegraf service with systemctl
start telegraf. This procedure allows data flow to and
from the RabbitMQ broker, facilitating the collection, process-
ing and monitoring of sensor data.

The terminate script stops the Telegraf service as well
as the TeSSLa monitor and removes all temporary files.

F. TeSSLa active monitor

To use TeSSLa as a monitor for runtime enforcement, the
TeSSLa specification (Fig. 7) and the Telegraf configuration
must be changed.

To adapt the TeSSLa specification to control the energy
saver mode instead of monitoring, the energy saver status is
no longer needed as an input and the delayed signal can be
provided as an output stream to switch on the energy saver if
the lid is still open. Because only the rising edge is delayed,
energy saving mode is switched off as soon as the lid closes.

The notable change in the Telegraf configuration is the line
shown in Fig. 9 in the AMQP output plugin, which translates
the boolean value for controlling the energy saving mode into
the JSON format required by the Incubator. By adding this
post-processing step to Telegraf12, the user is able to change
the formatting or desired temperature setting in the running
system by changing the configuration without recompiling the
monitor or losing its internal state.

transform = '{"temperature_desired":
fields.value ? 21 : 35}'↪→

Fig. 9: Telegraf JSON transformation

IV. CONCLUDING REMARKS

This tutorial paper delineates the process of integrating
RV within existing AS, by demonstrating different integration
patterns through five use cases. Although the tool integrations
has been demonstrated using NuRV and TeSSLa within a DT
context utilizing DTaaS, the underlying concepts extend be-
yond these implementation details. Consequently, the learning
outcomes can be generalized, enabling tutorial participants to
apply RV tools in their research to provide stronger guarantees
of the correctness of their AS. In the physical tutorial con-
ducted at ACSOS 2024, the examples will be demonstrated
sequentially, with a discussion of the deployment advantages
and disadvantages of each approach. Participants will also have
the opportunity to run the examples directly in the DTaaS
platform.

REFERENCES

[1] Albassam, E., Porter, J., Gomaa, H., Menasc, D.A.: DARE : A Dis-
tributed Adaptation and Failure Recovery Framework for Software
Systems. In: IEEE International Conference on Autonomic Computing
(2017), https://doi.org/10.1109/ICAC.2017.12

[2] Aziz, A., Chouhan, S.S., Schelén, O., Bodin, U.: Distributed Digital
Twins as Proxies-Unlocking Composability and Flexibility for Purpose-
Oriented Digital Twins. IEEE Access 11, 137577–137593 (2023), https:
//doi.org/10.1109/ACCESS.2023.3340132

[3] Blockwitz, T., Otter, M., Åkesson, J., Arnold, M., Clauss, C., Elmqvist,
H., Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson,
H., Viel, A.: Functional Mockup Interface 2.0: The Standard for Tool
independent Exchange of Simulation Models. In: Proc. 9th International
Modelica Conference. Linköping University Electronic Press (2012)

12Telegraf first introduced the JSON transformation feature in version 1.24,
which has not yet been widely distributed to package repositories.



[4] Cheng, B.H.C., Lansing, E., Clark, R.J., Lansing, E., Langford, M.A.,
Mckinley, P.K.: AC-ROS : Assurance Case Driven Adaptation for the
Robot Operating System. In: 23rf ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems. pp. 102–113.
No. 1, ACM (2020), https://doi.org/10.1145/3365438.3410952

[5] Cimatti, A., Tian, C., Tonetta, S.: NuRV: A nuXmv Extension for
Runtime Verification. In: Finkbeiner, B., Mariani, L. (eds.) Runtime
Verification - 19th International Conference, RV 2019, Porto, Portugal,
October 8-11, 2019, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 11757, pp. 382–392. Springer (2019), https://doi.org/10.1007/
978-3-030-32079-9_23

[6] Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M.,
Thoma, D.: TeSSLa: temporal stream-based specification language.
In: Formal Methods: Foundations and Applications: 21st Brazilian
Symposium, SBMF 2018, Salvador, Brazil, November 26–30, 2018,
Proceedings 21. pp. 144–162. Springer (2018)

[7] Donzé, A.: On signal temporal logic. In: Runtime Verification: 4th
International Conference, RV 2013, Rennes, France, September 24-27,
2013. Proceedings 4. pp. 382–383. Springer (2013)

[8] Falcone, Y.: You should better enforce than verify. In: International
Conference on Runtime Verification. pp. 89–105. Springer (2010)

[9] Feng, H., Gomes, C., Gil, S., Mikkelsen, P.H., Tola, D., Larsen, P.G.,
Sandberg, M.: Integration Of The Mape-K Loop In Digital Twins. In:
2022 Annual Modeling and Simulation Conference (ANNSIM). IEEE
(Jul 2022), https://doi.org/10.23919/annsim55834.2022.9859489

[10] Feng, H., Gomes, C., Thule, C., Lausdahl, K., Iosifidis, A., Larsen, P.G.:
Introduction to Digital Twin Engineering. In: 2021 Annual Modeling and
Simulation Conference (ANNSIM). IEEE (Jul 2021), https://doi.org/10.
23919/annsim52504.2021.9552135

[11] Feng, H., Gomes, C., Thule, C., Lausdahl, K., Sandberg, M.,
Larsen, P.G.: The Incubator Case Study for Digital Twin Engineering.
arXiv:2102.10390 (2021)

[12] Gomes, C., Broman, D., Vangheluwe, H., Thule, C., Larsen, P.G.: Co-
Simulation: A Survey. ACM Computing Surveys 51(3) (2018)

[13] Jahan, S., Riley, I., Walter, C., Gamble, R.F., Pasco, M., McKinley,
P.K., Cheng, B.H.C.: MAPE-K/MAPE-SAC: An interaction framework
for adaptive systems with security assurance cases. Future Genera-
tion Computer Systems 109, 197–209 (2020), https://doi.org/10.1016/
j.future.2020.03.031

[14] Kephart, J., Chess, D.: The vision of autonomic computing. Computer
36(1), 41–50 (2003), https://doi.org/10.1109/MC.2003.1160055

[15] Kübler, R., Schiehlen, W.: Two Methods of Simulator Coupling. Math-
ematical and Computer Modelling of Dynamical Systems 6(2) (2000)

[16] Malburg, L., Hoffmann, M., Bergmann, R.: Applying MAPE-K control
loops for adaptive workflow management in smart factories. Journal of
Intelligent Information Systems 61(1), 83–111 (2023), https://doi.org/
10.1007/s10844-022-00766-w

[17] Papamartzivanos, D., Gómez Mármol, F., Kambourakis, G.: Introducing
deep learning self-adaptive misuse network intrusion detection systems.
IEEE Access 7, 13546–13560 (2019), https://doi.org/10.1109/ACCESS.
2019.2893871

[18] Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium
on Foundations of Computer Science. pp. 46–57. IEEE (1977)

[19] Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L.,
Nee, A.: Enabling technologies and tools for digital twin. Journal of
Manufacturing Systems 58, 3–21 (2021)

[20] Robles, J., Martín, C., Díaz, M.: OpenTwins: An open-source framework
for the development of next-gen compositional digital twins. Computers
in Industry 152, 104007 (2023)

[21] Streichhahn Hendrick and Duodaki, Abdul Rahman and Hyttrek, Chris-
tian and Wolf, Jakob and Kreth, Yannick: TeSSLa Telegraf Connector.
https://tessla.io/blog/telegrafConnector/ (2024)

[22] Talasila, P., Craciunean, D.C., Bogdan-Constantin, P., Larsen, P.G.,
Zamfirescu, C., Scovill, A.: Comparison between the HUBCAP and
DIGITBrain Platforms for Model-Based Design and Evaluation of
Digital Twins. In: Proceedings of the 5th Workshop on Formal Co-
Simulation of Cyber-Physical Systems. CoSim CPS (2021)

[23] Zambrano, V., Mueller-Roemer, J., Sandberg, M., Talasila, P., Zanin, D.,
Larsen, P.G., Loeschner, E., Thronicke, W., Pietraroia, D., Landolfi, G.,
Fontana, A., Laspalas, M., Antony, J., Poser, V., Kiss, T., Bergweiler, S.,
Serna, S.P., Izquierdo, S., Viejo, I., Juan, A., Serrano, F., Stork, A.: In-
dustrial Digitalization in the Industry 4.0 Era: Classification, Reuse and
Authoring of Digital Models on Digital Twin platforms. Array p. 100176

(2022). https://doi.org/https://doi.org/10.1016/j.array.2022.100176, https:
//www.sciencedirect.com/science/article/pii/S2590005622000352



D3.2 - Monitorable and trustworthy verification loops (Public Document)

A.3 DynSRV: Dynamically Updated Properties for StreamRuntime
Verification

The appended paper follows.

77



DynSRV: Dynamically Updated Properties for
Stream Runtime Verification⋆

Morten Haahr Kristensen1[0009−0008−8467−7567],
Thomas Wright1[0000−0001−8035−0884], Cláudio Gomes1[0000−0003−2692−9742],

Lukas Esterle1[0000−0002−0248−1552], and
Peter Gorm Larsen1[0000−0002−4589−1500]

Department of Electrical and Computer Engineering, Aarhus University, Denmark
{mhk,thomas.wright,claudio.gomes,lukas.esterle,pgl}@ece.au.dk

Abstract. Systems that adapt to their environment or change based
on new requirements pose challenges for runtime verification. Complex-
ity is increased when the system needs to retain its internal state and
continue monitoring while also updating properties or adding new ones
during runtime. In this work, we propose DynSRV, a Stream Runtime
Verification language that allows for dynamic updates of properties. A
core benefit of this language is its capability to update properties at
runtime without requiring a restart of the monitor, maintaining the in-
ternal state of the remaining properties. We formalise the semantics of
our core primitives and demonstrate design patterns for allowing adap-
tations under certain constraints. Finally, we present an implementation
of DynSRV and describe three memory strategies that balance memory
usage and the ability to resolve dynamically added properties depending
on historical data.

Keywords: Runtime Verification, Dynamic Properties, Stream Run-
time Verification, Autonomous Systems, Dynamic Software Updating,
Self-Adaptive Systems

1 Introduction

Motivation. How do we ensure continuous and accurate runtime monitoring
when the system evolves during execution? If the system evolves in simple ways
that can be captured in static Runtime Verification (RV) specifications then
system evolution is not an issue. However, if significant behavioural changes
are introduced by a human through Dynamic Software Updating (DSU) (see,

⋆ The work presented here is supported by the RoboSAPIENS project funded by the
European Commission’s Horizon Europe programme under grant agreement number
101133807. In addition, the authors would like to thank Amalie Kaastrup-Hansen,
Tobias Frejo Rasmussen, and Mikkel Kirkegaard for the fruitful discussions leading
up to the paper.



2 M.H.Kristensen et al.

e.g. [13]) or autonomously, then the RV specification must also be updated to
ensure that the system is still being monitored correctly. Moreover, changes
often entail that the system requirements have evolved [13], and if so, then
the RV specification must also evolve to reflect these new requirements. An
example of this is shown in [18], where a self-adaptive cloud-edge-end power
distribution system requires the deployment of a state-machine based monitor
that changes to reflect requirement changes in real-time, as the system reacts
to evolving load demands, sensors failure, or maintenance events. Naturally, one
possibility is restarting the monitor with an updated specification, but this is
not always possible, as it involves loss of internal state potentially leading to
incorrect verdicts [20].
Contribution 1. We propose and formally define DynSRV, a Stream Run-
time Verification (SRV) language that allows monitors to be updated at runtime
without requiring restarts or manual rewriting. Specifically, we introduce two
primitives to DynSRV which enable expressing Dynamically Updated Proper-
ties (DUPs).
– defer(p) allows a RV property p to be specified at a later point in time,

enabling exactly one dynamic update.
– dynamic(p) extends the concept of defer(p) by permitting continual up-

dates, allowing the dynamic property to be modified multiple times through-
out execution.

DUPs extend the concept of DSU to SRV by allowing specifications to evolve
alongside the system without restarting. Unlike traditional DSU, which modifies
the functional aspects of a running system, DUPs focus on changing the RV
properties that the system is expected to satisfy.
Contribution 2. While DynSRV enables flexible adaptation, allowing arbitrary
dynamic expressions within a monitor introduces challenges in reasoning about
specification correctness. Thus, we propose design patterns for the specification of
DUPs, enabling controlled adaptations, refinements, and demonstrating common
adaptation patterns within DSU.
Contribution 3. We highlight the unique challenge presented by allowing adap-
tive SRV with DynSRV, such as ensuring consistency in monitoring results de-
spite evolving specifications, managing historical data for updated properties,
and developing performant interpreters that allow evaluating unforeseen prop-
erties.

2 Background & Related Work

We begin by linking the fields of DSU and Self-Adaptive Systems (SASs), which
provided the motivation for this work, and we discuss how they relate to DUPs.
We then recap the basic concepts of SRV before introducing existing works that
express special cases of DUPs in the context of RV.



DynSRV: Dynamically Updated Properties for SRV 3

2.1 Dynamic Software Updating and Self-Adaptive Systems

DSU enables modifying running systems without stopping them, which is critical
for applications like financial systems or web servers where downtime is costly.
Key challenges include maintaining safety, supporting flexible updates, minimis-
ing overhead, and easing the developer’s burden. Hicks, Moore, and Nettles [13]
address these with a DSU system for C-like languages using type-safe dynamic
patches and tools to aid patch creation and application.

SASs autonomously manage and adjust themselves to meet high-level goals [15].
Inspired by biological autonomic systems, they reduce manual intervention through
capabilities like self-configuration, optimisation, healing, and modular architec-
tural updates [25]. SASs use feedback loops and distributed components to moni-
tor, analyze, plan, and execute changes in dynamic environments. Key challenges
include goal specification, ensuring safety, and handling emergent behaviour.

DSU and SASs are interrelated: DSU enables runtime adaptation for SASs,
while SASs frameworks can manage DSU to maintain stability during updates.
Virtual machine-based DSU approaches, such as those presented in [23, 24, 14],
inspired our monitor architecture, offering runtime control and transformation
of system structures.

At design time, formal verification ensures DSU maintains safety and live-
ness properties. A foundational model by Bierman et al. [2] uses a λ-calculus
with an update primitive to enable formal reasoning about dynamic updates.
Despite extensive research (see surveys [21, 19, 26]), runtime updating of verifi-
cation properties remains an underexplored area. The following sections address
existing work on this topic.

2.2 Dynamically Updated Properties

SRV is a lightweight RV approach that monitors systems producing continuous
data streams. It processes input streams, i.e., sequences of event values, into
verdict streams following a given specification.

LOLA [8] is a SRV language, inspired by LUSTRE and ESTEREL, support-
ing basic operations, conditionals, and time-offsets to enable temporal monitor-
ing. LOLA uses a dependency graph to determine if a specification is “Efficiently
Monitorable”, ensuring bounded memory usage. LOLA pioneered SRV and has
influenced many subsequent languages, including TeSSLa [17].

Lola 2.0 improves dynamic RV through dynamic parametrization, enabling
quantification over objects and monitor spawning independent of observed in-
stances, and retroactive parametrization, allowing monitors to revisit past events
during execution [20]. While the new monitors support parameterizing existing
expressions, DynSRV allows dynamically providing any syntactically valid ex-
pression that references valid input streams.

Barringer et al. [1] propose Eagle, a general logic framework supporting recur-
sive monitoring rules with fixpoint semantics. Eagle supports dynamic monitor
generation and logics like Linear Temporal Logic (LTL), Metric Temporal Logic
(MTL), and Statistical Contracts.



4 M.H.Kristensen et al.

First order logic quantification in dynamically created objects in RV was ex-
plored by Havelund and Peled [12] and Sokolsky et al. [22] with LCv. LCv uses
first-order and attribute quantifiers to track dynamic entities (e.g., tasks, sen-
sors). This relates to Allocational Temporal Logic (ATL) using history-dependent
automata [9].

Actor-based runtime verification [7, 6, 4, 5] has previously been applied to
self-adaptive systems, using independent monitor actors that observe and react
to behaviour asynchronously.

The most relevant related work in terms of goals (but not methods) is by
Carwehl et al. [3], who propose dynamically adapting monitors to changing re-
quirements without restarting the monitor. Their monitors are synthesized as
automata with error states based on structured English specifications trans-
lated into MTL, whereas we use stream-based properties. During execution, a
Runtime Verifier checks for violations, and when requirements change, a Require-
ments Manager applies predefined Property Adaptation Patterns (e.g., updating
a time guard or updating events). In contrast, we support arbitrary property ex-
pressions as long as they are syntactically valid and use existing input streams.
While they argue that adhering to fixed patterns leads to safer adaptations and
view fully dynamic RV as undesirable, we take a different stance, and demon-
strate through Contribution 2 that we can address these valid concerns while
prioritising expressiveness.

3 Specification Language

3.1 Motivational example

To provide a motivational example (Fig. 1), we consider future production lines
where different products are manufactured by autonomously moving robots. The
robots move around in the production hall and utilise the different tools available
in order to produce the desired items. The robot has an understanding of the
production process and which tools to utilise for each product. However, while
the robot and the production line are developed in parallel, the robot will only get
knowledge of the final layout and the respective locations of the different tools
upon completion of the production hall. Upon deployment, the robot will be
given a product to manufacture, and it will start to move around the production
hall. When the product is completed, the robot will receive a new product –
potentially with a different requirement for the tools to be used. The robot
will then have to adapt its plans, movement and overall behaviour to the new
product. Finally, the robot is battery-operated and will need to recharge at
certain intervals as well as undergo regular maintenance.

In this scenario, the robot uses the stream l = defer(lin) for the layout of the
production lines, respective locations of the different tools, and restricted areas,
using defer since this configuration becomes immutable once it is made. At de-
ployment time, p = dynamic(pin) is used to change the rules determining which
products the robot is allowed to manufacture as the production line evolves.



DynSRV: Dynamically Updated Properties for SRV 5

t₂ t₃t₁ t₄

Fig. 1: Example of a production line at different time steps. First is the empty
production hall, then the layout with the machines is added – a specific area is
for robot maintenance (red square). Last two show which tools are allowed to
be used during phases t3 and t4 (highlighted in purple).

Here, the new rules can use the information gathered from the layout stream.
Finally, the verdict is available with v = update(pinit, p) where an initial value
of production rules is provided with update, which is detailed in Section 3.3.

This example highlights the need for DUPs in scenarios where the monitored
system is subject to dynamic changes, and the monitoring properties must adapt
accordingly. In addition, the specification can include static properties. For in-
stance, the robot is also subject to regular maintenance and recharging within
at least certain intervals (e.g., at least every 12 hours), requiring stateful prop-
erties to be monitored. As the stateful maintenance information would be lost if
the monitor is restarted, a simple restart for each product update is not feasi-
ble. While this is only a simple example, the reader can imagine more complex
scenarios with multiple robots and multiple products operating in parallel and
potentially creating conflicts around resources and tools during execution.

3.2 Syntax

DynSRV defines monitors that transform a set of input streams I = {p1, . . . , pn}
into a set of output streams O = {o1, . . . , om}. Each stream s = (s1, s2, . . .) is a
sequence of typed values si in some domain D. These domains D include booleans
B, integers Z, floating point numbers F, and, recursively, stream expressions in
the DynSRV expression domain E[D] which we will shortly define with values
in some domain D. Streams may also take on a special value ⊥ (pronounced
deferred), denoting that no value was sent at the current time step.

A specification Φ over input streams and output streams S = I ⊎ O (where
⊎ denotes the disjoint union) consists of a set of equations

o1 = ϕo1 . . . on = ϕon

where the expressions ϕo are defined as stream expressions with output domain
D. Stream expressions ϕ ∈ E[D] are defined recursively to be a basic expression,
a DUP, or a DUP helper. We elaborate on the precise semantics for DUPs in
Section 3.3.
A basic expression is one of the following:



6 M.H.Kristensen et al.

– a constant ϕ ≜ c for c ∈ D
– a stream variable ϕ ≜ v for any v ∈ S

– a function application ϕ ≜ f(ψ1, . . . , ψn)
which lifts an arbitrary data-domain function f : D1 × . . .× Dn → D

– a temporal index ϕ ≜ ψ[−j] for ψ ∈ E[D], j ∈ N
referring to the value of ψ at j time units in the past

– a conditional ϕ ≜ if σ then ψ1 else ψ2 for σ ∈ E[B]
ψ1, ψ2 ∈ E[D]

A DUP is one of the following:
– a defer ϕ ≜ defer(ψ) for ψ ∈ E[D]

referring to a dynamic property which is ⊥ until the first point at which
ψ becomes available and behaves like ψ subsequently

– a dynamic ϕ ≜ dynamic(ψ) for ψ ∈ E[D]
referring to a dynamic property which behaves like the most recent value
of ψ or is ⊥ if none has been sent

A DUP helper is one of the following:
– a default ϕ ≜ default(ψ, c) for ψ ∈ E[D], c ∈ D

which uses the default value c if ψ is ⊥
– a when ϕ ≜ when(ψ) for ψ ∈ E[D]

which is false until the first time ψ is not ⊥ and true thereafter
– an update ϕ ≜ update(ψ1, ψ2) for ψ1, ψ2 ∈ E[D]

which is ψ1 until the first time ψ2 is not ⊥ and ψ2 thereafter
Standard data-domain operators such as addition, multiplication, logical con-
junction, disjunction, and comparison operators are supported as functions f
lifted to stream expressions. These operators propagate ⊥ values such that e.g.
42 +⊥ = ⊥.

Furthermore, we define a specification to be well-defined, if it has no zero-
time cycle of dependencies (similarly to [8]), that is, if any dependency cycle is
guarded by a time index. This restriction is necessary for specifications to be
monitorable.

3.3 Semantics of DUPs

In this section we define a mathematical semantics for DynSRV specifications Φ.
We note that this follows a similar approach to the semantics of TeSSLa [17]
and LOLA [8], whilst introducing novel definitions to handle DUPs.

First, we need to formalise the notion of streams, used for specification input
and output. We need these to handle both deferred data ⊥ (for dynamic prop-
erties) as well as partiality, which uses the special value ? to represent stream
values which have not yet been computed.

Definition 1 (Stream). A partial stream (or simply, stream) is a function
s : T → D ∪ {?,⊥} such that s(i) = ? implies that for all j > i we must have
s(j) = ?. We denote the set of streams by Stream = [V → D ∪ {?,⊥}].

Additionally, we call a partial stream total if ∀i ∈ T : s(i) ̸= ?.



DynSRV: Dynamically Updated Properties for SRV 7

We define the input namespace in(Φ) consisting of the set of input variables,
the output namespace out(Φ) consists of the set of output variables, and we define
vars(Φ) = in(Φ) ∪ out(Φ). We also define vars(ϕ), for any stream expression ϕ
to be the set of all stream variables appearing in ϕ, and define V to be the
set of all variable names1. This allows us to introduce contexts, representing an
assignment of partial streams to some stream variables v in the set of all stream
variables V.

Definition 2 (Context). A context is a partial function C : V ⇀ Stream.
We denote the set of all such partial functions as

Context ≜ [V⇀ T → D ∪ {?,⊥}] = [V⇀ Stream].

That is, within a given context, for a stream variable v ∈ V in the domain
of stream variables for which it is defined, we have a stream for this stream
variable C(v) : T → D∪{?,⊥}. In particular, the inputs to a specification Φ can
be provided via an input context Cin such that dom(Cin) = in(Φ).

We also define the refinement partial order on data values by setting u ⊑ v iff
v = ? implies u = ? . This extends elementwise to a partial order ⊑ on streams,
and on contexts sharing the same domain.

Using this, we define the semantics of a specification Φ as the least fixed-
point of a single-step semantics, which expands one recursive step of the stream
equations, using refinement to gradually build streams covering the whole time
domain.

Definition 3. We define the single-step semantics for a specification Φ to be the
function JΦKI : Context → Context → Context defined such that

JΦK1(C)(D)(v) = JϕvK1(C)(D ⊎ C)

for each v ∈ vars(ϕ), whilst the denotation function for a well-defined specifi-
cation Φ given initial context C = Cin to be the function JΦK : Context →
Context defined as the least-fixed point:

JΦK (C) = µD. JΦK1(C)(D).

under the refinement order ⊑.
We also define the shorthand JψK(C) ≜ JΨK(C) for the semantics of ϕ within

the specification Ψ ≜ v = ψ where v is any fresh variable name.

The fixed-point in the above definition exists and is unique for well-defined speci-
fications Φ by Kleene’s fixed-point theorem since the definitions of the single-step
semantics for individual operators – which we will give shortly – are monotone
in the refinement order ⊑, and hence so is JΦK1(C).

1 To be concrete, we can set V = N for countably many numerically-indexed variables.



8 M.H.Kristensen et al.

This depends on the single-step semantics for individual operators, which we
define as follows for basic operators,

JcK1(C)(D)(i) ≜ c

JvK1(C)(D)(i) ≜ D(v)(i)

Jf(ψ1, . . . , ψk)K1(C)(D)(i) ≜ f(Jψ1K1(C)(D)(i), . . . , JψkK1(C)(D)(i))

Jif σ then ψ1 else ψ2K1(C)(D)(i) ≜


Jψ1K1(C)(D)(i) if JσK1(C)(D)(i) = true

Jψ2K1(C)(D)(i) if JσK1(C)(D)(i) = false

⊥ if JσK1(C)(D)(i) = ⊥
? if JσK1(C)(D)(i) = ?

Jψ[−j]K1(C)(D)(i) ≜

{
JψK1(C)(D)(i− j) if i ≥ j

⊥ otherwise

For the other functions, we first define duration restricted subsets of a con-
text, which can be used to evaluate properties using only data available at a
given point in time.

Definition 4. Given a context C we define the duration-d prefix of C as the
context C|d defined by

C|d(v)(i) ≜

{
C(v)(i) if i ≤ d

? otherwise

which we use to define the following two helper functions,

Definition 5. For maximum duration i, expression ψ, and context C, we define
the functions first, last : N× E[D]× Context → N ∪ {∞} defined by

first(i, ψ, C) ≜ min
{
j ∈ N

∣∣ JψK(C|j)(j) /∈ {⊥, ?} ∧ j ≤ i
}

last(i, ψ, C) ≜ max
{
j ∈ N

∣∣ JψK(C|j)(j) /∈ {⊥, ?} ∧ j ≤ i
}

where each of these functions is set to ∞ if JψK(C|j)(j) ∈ {⊥, ?} for all j.

Then we define the single-step semantics of dynamic properties by,

Jdefer(ψ)K1(C)(D)(i) ≜

{
JψjK1(C)(D)(i) if i ≥ j

⊥ if j = ∞

Jdynamic(ψ)K1(C)(D)(i) ≜

{
JψkK1(C)(D)(i) if i ≥ k

⊥ if k = ∞

where j = first(i, ψ, C), k = last(i, ψ, C), ψj ≜ JψK1(C|j)(D)(j), and ψk ≜
JψK1(C|k)(D)(k).



DynSRV: Dynamically Updated Properties for SRV 9

Finally, we define the semantics of each of the DUP helper functions by

Jupdate(ψ1, ψ2)K1(C)(D)(i) ≜

{
Jψ1K1(C)(D)(i) if first(i, ψ2, D) = ∞
Jψ2K1(C)(D)(i) otherwise

Jwhen(ψ)K1(C)(D)(i) ≜

{
false if first(i, ψ, C) = ∞
true otherwise

Jdefault(ψ, c)K1(C)(D)(i) ≜

{
JψK1(C)(D)(i) if JψK1(C)(D)(i) ̸= ⊥
c otherwise

4 Design patterns with DUPs

In practical RV scenarios, system requirements change. Supporting such changes
with a first-class language construct allows specifications to adapt systematically,
and allows expressing which parts are allowed to adapt. With DUPs, not only can
the specification itself evolve over time, but it also becomes possible to express
meta-properties, i.e., properties about how the specification may change. This
section presents design patterns for writing specifications with DUPs in DynSRV.

General design patterns
Open property shows the most permissive use of dynamic, where the verdict
v, directly reflects the incoming property p. In this case, it is up to the sender
to ensure that the provided property is safe and valid.

v = dynamic(p)

Weaken allows dynamic properties to weaken an existing requirement. In this
example, accepting a new goal g normally requires the robot’s battery level
b to be above 30%. However, in emergencies such as a fire, strictly enforcing
this threshold could block critical actions, such as evacuating an area or saving
material, thus custom rules p are allowed.

v = g =⇒ b > 30 ∨ default(dynamic(p), false)

Strengthen allows dynamic properties to strengthen existing requirements. In
the example, T is the current time, Tm is the scheduled maintenance time, and
p represents dynamic rules that further constrain the maintenance window. For
instance, these rules might shorten the service interval if the battery degrades
or if the robot moves farther from its charging station.

v = T < Tm ∧ default(T < dynamic(p), true)

Refinement allows refining an existing property with a new one, where the
verdict reflects whether the refinement is valid. In this example, b represents an
update of the original condition bc to a new property p once sent. The refinement



10 M.H.Kristensen et al.

expression r evaluates whether the new property remains valid within the context
of the original condition. Notably, r is a tautology (bc =⇒ bc) when no new
property has been provided. The verdict v combines the updated condition b
and the refinement r, where true means the requirements are met. If the new
property evaluates to ⊥, the verdict becomes false.

bc = b > 30 b = update(bc, defer(p))

r = b =⇒ bc v = default(b ∧ r, false)

Adaptation patterns
In their works on A-LTL, Zhang and Cheng [27] formalised the semantics of
three commonly occurring adaptation semantics: one-point, guided, and overlap
adaptation2. This is depicted in Fig. 2. To highlight the expressiveness of Dyn-
SRV, we demonstrate how the latter two can be expressed with DUPs. One-point
adaptation is trivial with DynSRV, as it immediately applies the new property,
which is the default behaviour of defer and dynamic.

SPROP TPROP

AREQ

(a) One-point adaptation, where
TPROP is used immediately upon
arrival.

RCOND

SPROP TPROP

AREQ

(b) Guided adaptation, where TPROP

is used when RCOND is satisfied.

RCOND

SPROP
TPROP

AREQ

(c) Overlap adaptation, where TPROP

is used alongside SPROP until the
RCOND is satisfied, whereafter only
TPROP is used.

property before adaptation

property during adaptation

property after adaptation

interval

Fig. 2: Adaptation semantics proposed by Zhang and Cheng, figure adapted from
[27] with minor modifications for SRV.

Guided adaptation allows a new property to not be used immediately but
await for a restriction condition to be satisfied, as depicted in Fig. 2b. This
allows the system to delay the application of a new property until appropriate.
2 In Zhang and Cheng’s [27] semantics, adaptation may involve a delay between re-

ceiving and applying an adaptation request to ensure the program is in a safe state.
This is not required in DynSRV, as it is stateless.



DynSRV: Dynamically Updated Properties for SRV 11

t0 t1 t2 t3 t4

R false false false true true

c false false false true false

S 0 1 2 3 4

x 0 1 2 3 4

v 0 1 2 103 104

T ? ?? x + 100 ?

(a) Trace demonstrating guided adap-
tation. The verdict stream v switches
to T after R is satisfied.

t0 t1 t2 t3 t4

R false false false true true

c false false false true false

S 0 1 2 3 4

x 0 1 2 3 4

v 0 102 104 103 104

T ? ?? x + 100 ?

(b) Trace demonstrating overlap adap-
tation. The verdict stream v combines
S and T until R is satisfied, after which
it uses only T .

Fig. 3: Example traces for guided and overlap adaptation.

The example below demonstrates a specification implementing guided adap-
tation in DynSRV, with the corresponding trace in Fig. 3a. An integer stream
is used for the verdict to more clearly represent its distinct states.

S = x R = when(T ) ∧ c ∨ default(R[−1], false)

c = x == 3 v = if R then defer(T ) else S

Here, x and T are input streams, with T representing a property received at
time step 1. This property is not applied to the verdict v immediately but is
gated by R, which becomes true when c holds after the property is received –
at time step 3. The disjunction with default(R[−1], false) ensures that once R
holds, it remains true thereafter. The verdict v switches to the deferred property
defer(T ) only after R holds; otherwise, it yields from S.

Overlap adaptation allows a new property to be used alongside the original
property until a condition is satisfied, as depicted in Fig. 2c. Once this condition
holds, the new property is used exclusively.

The example below shows a DynSRV specification implementing this be-
haviour, with its trace depicted in Fig. 3b:

S = x R = when(T ) ∧ c ∨ default(R[−1], false)

c = x == 3 v = if ¬when(T ) then S else if ¬R then S + T else T

Unlike guided adaptation, overlap adaptation introduces a transition phase where
the original stream and the new one are combined (S + T )3 until the condition
R becomes true. Initially, the verdict v yields from S. When a new property is
received at time step 1 via T , the verdict combines S and T until R is satisfied
at time step 3. After that, the verdict uses only T .
3 Here, addition is used as an example; other operators may apply depending on

context.



12 M.H.Kristensen et al.

5 Memory management and History with DUPs

Efficient online monitoring with SRV has long been a focus of the community.
Newer languages such as TeSSLa [17] guarantee Bounded Memory (BM) by dis-
allowing future stream indexing – a restriction also adopted by DynSRV. Here,
we define BM to mean that at each monitoring step, the monitor’s memory usage
does not grow with the length of the trace. While memory usage may change
dynamically (e.g., when new properties are added), it must remain independent
of the trace length. Allowing DUPs in DynSRV introduces a trade-off for en-
suring BM, as dynamic expressions may require access to historical data that
would otherwise be discarded as a part of the memory management strategy. In
static SRV languages, the Dependency Graph (DG) can be used to safely dis-
card unused history once it is no longer needed to resolve equations. In contrast,
DUPs can introduce new data dependencies at runtime, potentially referencing
historical values that have already been discarded to free memory. This dynamic
behaviour makes it impossible to guarantee both BM usage and optimal resolu-
tion of expressions introduced by DUPs. Even if a dynamic expression at time
t could be resolved to a non-⊥ value given the full trace, the monitor may still
return ⊥ if the necessary data has been discarded. This section defines solvable
stream expressions in relation to memory management and presents three strate-
gies that demonstrate the trade-off.

Solvable stream expressions
For this section, we use the notation that ϕ[−j] refer to a stream expression ϕ
annotated with an optional temporal index −j, where j = 0 when no explicit
index is given.

Definition 6 (Effective Index). Given a stream expression ϕ[−j] and stream
variable s ∈ vars(ϕ), the effective index index(ϕ, s, j) is defined as:

index(ϕ, s, j) =



j + j′ if ϕ = s[−j′], s ∈ vars(ϕ)

j if ϕ = when(ψ) ∨
ϕ = default(ψ, c)

index(ψ, s, j) if ϕ = defer(ψ) ∨
ϕ = dynamic(ψ)

index(ψ, s, j + j′) if ϕ = ψ[−j′]
max({index(ψ, s, j) |
ψ ∈ {ψ1, . . . , ψn}})

if ϕ = f(ψ1, . . . , ψn)

max({index(σ, s, j),
index(ψ1, s, j), index(ψ2, s, j)}

if ϕ = if σ then ψ1
else ψ2

max({index(ψ1, s, j),
index(ψ2, s, j)}

if ϕ = update(ψ1, ψ2)

j otherwise

Effective Index is useful for reasoning about expressions with nested temporal
indices. We highlight the case with when(ψ) and default(ψ, c) expressions, which



DynSRV: Dynamically Updated Properties for SRV 13

do not introduce new temporal indices and can therefore be used in practice to
relax the requirements for solvable introduced below.

Definition 7 (Dependency Graph). Let sx ∈ O, sy ∈ S be streams and
ϕ[−j] the expression assigned to sx. A Dependency Graph (DG) is a weighted
and directed multigraph G = (S,E), with edges (sx, sy, k, T ) ∈ E iff the equations
for sx contains sy as a subexpression with effective index k = index(ϕ, sy, j),
and the edge was introduced at monitor step T .

The need for T in the DG definition becomes apparent when considering Dy-
namic Dependency Graphs (DDGs) in strategy 3 below. Until then, it can be
assumed that T = 0.

Note that if the specification contains DUPs, e.g., if x = dynamic(p) then
(x, p, 0, 0) ∈ E, but the properties sent at runtime to p are not. As a result,
the DG must be extended to track new dependencies introduced by DUPs, as
demonstrated with the strategies below, such that the dynamically received ex-
pressions can become solvable.

Definition 8 (Solvable). Let k = index(ϕ, s, j) be the effective index of ϕ for
stream variable s ∈ vars(ϕ). A stream expression ϕ[−j] is said to be solvable at
monitor step t if there exists an edge (s′, s, j′, T ) ∈ E such that:

t ≥ T + k ∧ j′ ≥ k,

and s evaluated at monitor step (t− k) is not equal to ⊥.

Intuitively, the first term t ≥ T + k ensures that the monitor has progressed
sufficiently in steps since the dependency was introduced to solve the expression.
The second term j′ ≥ k ensures that there exists an edge in the DG with a
sufficiently large effective index such that the kth last value of s is not discarded.

Theorem 1 claims that a solvable stream expression evaluates to a non-⊥
value at monitor step t. The proof follows by structural induction on ϕ and is
written out in full in the appendix.

Theorem 1. Let ϕ be a stream expression that is solvable at monitor step t and
may contain DUPs instantiated with solvable stream expressions (ψ1, . . . , ψN ).
Then, ϕ evaluated at monitor step t is not equal to ⊥.

When writing DynSRV specifications, considering when a stream expression is
not solvable is crucial, as an ⊥ verdict at runtime may not be desirable. We
now present three memory management strategies that have different trade-offs
between memory efficiency and trace availability (keeping expressions solvable
as often as possible).

Strategy 1 – Discard BM: Retain the entire history
Favoring trace availability, this strategy introduces unbounded time dependen-
cies to every other stream in the specification when a DUP is present:

EDUP =
⋃
s∈O

{(s, s′, j, 0) | hasDUP(s), s′ ∈ S \ {s}, j ∈ N}

G = (S,E ∪ EDUP)



14 M.H.Kristensen et al.

where hasDUP(s) indicates that stream s’s expression contains a DUP.
Using this DG to retain data ensures that any stream expression received

dynamically through a DUP is solvable at any monitor step t, if the monitor has
progressed sufficiently and none of the referenced stream variables are ⊥ at the
specific monitor steps. That is, the condition j′ ≥ k from Definition 8 is always
met. However, this strategy sacrifices memory efficiency, as any specification
involving DUPs will no longer have BM.

Strategy 2 – Preserve BM: Statically specifying dependencies of DUPs
To retain memory efficiency, an alternative approach is to restrict DUPs by re-
quiring users to explicitly annotate their potential temporal dependencies in ad-
vance. For example, the expression dynamic(p, {(x,−4), (y,−2)}) declares that
the dynamically introduced property p may depend on stream x up to 4 steps
back in time, and on stream y up to 2 steps. A similar change could be made
for defer. The DG is then defined as:

EDUP =
⋃
s∈O

declaredDUP(s)

G = (S,E ∪ EDUP)

where declaredDUP(s) returns the set of edges that are explicitly declared as
dependencies of s. This strategy allows each property in the specification to
maintain BM, even when using DUPs. However, this comes at the cost of ex-
pressiveness as it becomes possible to introduce expressions that never become
solvable, specifically, expressions where the condition j′ ≥ index(ϕ, s, j) does
not hold, causing them to always evaluate to ⊥.

Strategy 3 – Preserve BM: Dynamically update dependencies
To balance memory efficiency and trace availability, we propose a DDGs, which
extends static DGs by adding dependencies introduced by DUPs at runtime. The
DG becomes a time-dependent structure, where the edges are updated based on
the declared dependencies of received expressions.

We define the DDG as a stream of DGs that is updated according to the
received expressions:

EDUP(t) =
⋃
s∈O

where s is assigned e

dep(s, t, JsK (last(t, e, JΦKCin)))

G(t) = (S,E ∪ EDUP(t))

where JsK (last(t, e, JΦKCin)) denotes the last received expression for stream s at
time t in the context JΦKCin, and dep(s, T, e) returns the set of dependencies
introduced by the expression e assigned to stream s at monitor step T .

The DDG is used in our DynSRV implementation, detailed in Section 6,
to determine how much history to retain at each step. By updating the DDG
accordingly, the condition j′ ≥ index(ϕ, s, j) from Definition 8 is guaranteed for
new properties as there exists a j′ equal to j. However, the monitor step T from



DynSRV: Dynamically Updated Properties for SRV 15

Definition 7 is crucial here: If a new expression ψ referencing stream variable s at
effective index k arrives at step T , and at step T −1, s had no incoming edges in
the DDG, then ψ is not solvable before time T + k, and may evaluate to ⊥ until
then. While this approach offers weaker trace availability than the previous two
strategies, it preserves bounded memory and supports the full expressiveness of
DUPs.

6 Implementation and performance

DynSRV is implemented in Rust as part of the RoboSAPIENS trustworthiness
language framework [16], which is a general framework for implementing stream-
based languages. The framework is implemented as a modular runtime, with a
parser layer that parses specifications into an Abstract Syntax Tree, an extensible
execution layer that allows for multiple runtime engine and language semantics
to be implemented, and a flexible IO layer allowing input and output streams
to be transmitted several sources including files, MQTT, and ROS topics.

As discussed in Section 5, DUPs impose some additional requirements on the
implementation of the language compared to existing SRV languages. We meet
these requirements via two runtime engine implementations: a constraint-based
similar to LOLA [8], and a novel stream-based which translates the specification
into a collection of asynchronous Rust actors that communicate over channels.
The latter engine features some key design decisions:
– Dependencies between stream variables are handled dynamically, with a

publisher/subscriber model used to propagate input values to dependent
streams.

– The lifetimes of stream values are handled automatically via Rust’s owner-
ship model and the use of channels to communicate between actors. This
means that there is no central constraint store or garbage collection step.

This dynamic model does impose some performance challenges since specifica-
tions cannot easily be compiled to specifically optimized Rust code for a single
specification (as in [11]) and has to keep track of dependencies at runtime. How-
ever, as shown in Fig. 4, we are still able to introduce and monitor deferred
properties over 100, 000 events in under 500 milliseconds, whilst properties in-
volving no dynamics updates can be monitored with little overhead.

7 Conclusion

In this paper, we have demonstrated how DUPs can be supported with our SRV
language DynSRV. Section 2 highlights how DynSRV differs from most related
work by enabling truly dynamic expressions to the system’s existing properties,
whereas prior approaches primarily focus on adapting specific system behaviours.

The semantics presented in Section 3.3 define the denotational meaning of
our DUPs primitives, while Section 5 compliments this by describing different
memory management strategies based on the trade-off between memory usage
and trace availability. Design patterns in Section 4 demonstrate how to weaken,



16 M.H.Kristensen et al.

 

 

350

300

250

200

150

100

50

0

Ti
m

e 
(m

ill
is

)

# Events
1 25,000 50,000 75,000 100,000

100%

75%

25%

direct

0%

50%

Fig. 4: Time taken to monitor a deferred property z = default(defer(e), true)
with the property e = x ∧ y introduced at a certain percentage of the run,
compared to direct monitoring of z = x ∧ y.

strengthen, and refine properties, as well as describe how to express well-known
DSU adaptation patterns.

We consider DynSRV to be especially relevant given the increasing number
of systems that require DSU and SASs in our environment and the correspond-
ing need for correctness and safety assurances. While the adaptation for some
of these systems is simple enough to be specified statically, others may change
in ways where we do not necessarily know what the behaviour in certain situ-
ations precisely looks like as shown by Esterle and Brown in [10]. Even if we
could specify all possible adaptations in advance, state-space explosion makes it
practically infeasible. Our language allows deferring certain parts of the verifica-
tion to runtime, allowing users to specify new properties as the system evolves,
similar to DSU, or allowing a SASs to autonomously specify updated properties
as the system evolves.

In the future, we intend to further evaluate the language for industrial use
cases, including the case studies provided by the RoboSAPIENS project [16].
We also hope to extend the core language to add full support for asynchronous,
timed properties and distributed monitoring of properties.

References

1. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-Based Runtime Verifi-
cation. In: Verification, Model Checking, and Abstract Interpretation, pp. 44–57
(2004). https://doi.org/10.1007/978-3-540-24622-0_5

2. Bierman, G., Hicks, M., Sewell, P., Stoyle, G.: Formalizing Dynamic Software Up-
dating

3. Carwehl, M., Vogel, T., Rodrigues, G.N., Grunske, L.: Runtime Verification of Self-
Adaptive Systems with Changing Requirements. In: IEEE/ACM Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 104–
114 (2023). https://doi.org/10.1109/SEAMS59076.2023.00024



DynSRV: Dynamically Updated Properties for SRV 17

4. Cassar, I., Francalanza, A.: On Implementing a Monitor-Oriented Programming
Framework for Actor Systems. In: Integrated Formal Methods, pp. 176–192 (2016).
https://doi.org/10.1007/978-3-319-33693-0_12

5. Cassar, I., Francalanza, A.: Runtime Adaptation for Actor Systems. In: Runtime
Verification, pp. 38–54 (2015). https://doi.org/10.1007/978-3-319-23820-3_3

6. Clark, T., Kulkarni, V., Barat, S., Barn, B.: A Homogeneous Actor-Based Monitor
Language for Adaptive Behaviour. In: Programming with Actors: State-of-the-Art
and Research Perspectives, pp. 216–244 (2018). https://doi.org/10.1007/978-
3-030-00302-9_8

7. Clark, T., Kulkarni, V., Barat, S., Barn, B.: Actor Monitors for Adaptive Be-
haviour. In: Proceedings of the Innovations in Software Engineering Conference,
pp. 85–95 (2017). https://doi.org/10.1145/3021460.3021469

8. D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H., Mehrotra, S., Manna, Z.: LOLA: Runtime Monitoring of Synchronous
Systems. In: Proceedings of the International Symposium on Temporal Representa-
tion and Reasoning, pp. 166–174 (2005). https://doi.org/10.1109/TIME.2005.26

9. Distefano, D., Rensink, A., Katoen, J.-P.: Model Checking Birth and Death. In:
Proceeings of IFIP International Conference on Theoretical Computer Science
(TCS), pp. 435–447 (2002). https://doi.org/10.1007/978-0-387-35608-2_36

10. Esterle, L., Brown, J.N.: The Competence Awareness Window: Knowing what I can
and cannot do. In: 2020 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C), pp. 62–63 (2020). https:
//doi.org/10.1109/ACSOS-C51401.2020.00031

11. Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.: Verified Rust Monitors for
Lola Specifications. In: Runtime Verification, pp. 431–450 (2020). https://doi.
org/10.1007/978-3-030-60508-7_24

12. Havelund, K., Peled, D.: Runtime Verification: From Propositional to First-Order
Temporal Logic. In: Runtime Verification, pp. 90–112 (2018). https://doi.org/
10.1007/978-3-030-03769-7_7

13. Hicks, M., Moore, J.T., Nettles, S.: Dynamic software updating. ACM SIGPLAN
Notices 36(5), 13–23 (2001). https://doi.org/10.1145/381694.378798

14. Iftikhar, M.U., Weyns, D.: ActivFORMS: Active Formal Models for Self-Adaptation.
In: Proceedings of the International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), pp. 125–134 (2014). https://doi.org/
10.1145/2593929.2593944

15. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–
50 (2003). https://doi.org/10.1109/mc.2003.1160055

16. Larsen, P.G., Ali, S., Behrens, R., Cavalcanti, A., Gomes, C., Li, G., De Meulenaere,
P., Olsen, M.L., Passalis, N., Peyrucain, T., Tapia, J., Tefas, A., Zhang, H.: Robotic
safe adaptation in unprecedented situations: the RoboSAPIENS project. Research
Directions: Cyber-Physical Systems 2 (2024). https://doi.org/10.1017/cbp.
2024.4

17. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: Run-
time Verification of Non-Synchronized Real-Time Streams. In: Proceedings of the
Annual ACM Symposium on Applied Computing, pp. 1925–1933 (2018). https:
//doi.org/10.1145/3167132.3167338

18. Li, Y., Duan, X., Xu, Y., Zhao, C.: Dynamic Assessment Approach for Intelligent
Power Distribution Systems Based on Runtime Verification with Requirements
Updates. High-Confidence Computing (2024). https://doi.org/10.1016/j.hcc.
2024.100255



18 M.H.Kristensen et al.

19. Lounas, R., Mezghiche, M., Lanet, J.-L.: Formal Methods in Dynamic Software
Updating: A Survey. International Journal of Critical Computer-Based Systems
9(1–2), 76–114 (2019). https://doi.org/10.1504/IJCCBS.2019.098794

20. Pedregal, P., Gorostiaga, F., Sánchez, C.: A Stream Runtime Verification Tool
with Nested and Retroactive Parametrization. In: Runtime Verification, pp. 351–
362 (2023). https://doi.org/10.1007/978-3-031-44267-4_19

21. Seifzadeh, H., Abolhassani, H., Moshkenani, M.S.: A survey of dynamic software
updating. Journal of Software: Evolution and Process 25(5), 535–568 (2012). https:
//doi.org/10.1002/smr.1556

22. Sokolsky, O., Sammapun, U., Lee, I., Kim, J.: Run-Time Checking of Dynamic
Properties. Electronic Notes in Theoretical Computer Science 144(4), 91–108 (2006).
https://doi.org/10.1016/j.entcs.2006.02.006

23. Subramanian, S., Hicks, M., McKinley, K.S.: Dynamic Software Updates: A VM-
centric Approach. In: Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 1–12 (2009). https://doi.org/
10.1145/1542476.1542478

24. Walton, C., Krl, D., Gilmore, S.: An Abstract Machine for Module Replacement.
In: Proceedings of the Workshop on Principles of Abstract Machines (1998)

25. Weyns, D.: Engineering Self-Adaptive Software Systems – An Organized Tour. In:
Proceedings of the IEEE International Workshops on Foundations and Applications
of Self* Systems (FAS*W), pp. 1–2 (2018). https://doi.org/10.1109/FAS-
W.2018.00012

26. Wong, T., Wagner, M., Treude, C.: Self-adaptive systems: A systematic literature
review across categories and domains. Information and Software Technology 148,
106934 (2022). https://doi.org/10.1016/j.infsof.2022.106934

27. Zhang, J., Cheng, B.H.C.: Using Temporal Logic to Specify Adaptive Program
Semantics. Journal of Systems and Software 79(10), 1361–1369 (2006). https:
//doi.org/10.1016/j.jss.2006.02.062



DynSRV: Dynamically Updated Properties for SRV 19

Appendix

Proof of Theorem 1

Proof. Assume ϕ is a stream expression that is solvable at monitor step t, po-
tentially containing DUPs receiving solvable subexpressions (ψ1, . . . , ψN ). We
proceed by structural induction on the stream expression ϕ:
– Basic expressions: By definition of solvable, all stream variables referenced

by ϕ at their respective time indices are not equal to ⊥ at monitor step t.
Therefore, if ϕ is a basic expression it cannot evaluate to ⊥ at monitor step t,
since basic expressions only evaluate to ⊥ when a referenced stream variable
is ⊥ at that time step.

– default(ψ, c) never evaluates to ⊥, because it yields ψ if ψ ̸= ⊥, and defaults
to the constant c ∈ D otherwise.

– when(ψ) is guaranteed to evaluate to a value in B.
– update(ψ1, ψ2) evaluates to ψ2 if ψ2 ̸= ⊥, which is guaranteed by the defi-

nition of solvable.
– DUPs: If ψi is a DUP, it will either be ψi = defer(ψ′

i) or ψi = dynamic(ψ′
i).

For ψi to be solvable, ψ′
i must also be solvable. By induction, this means

that ψ′
i is either a non-DUP expression that evaluates to a non-⊥ value at

step t or a DUP that is solvable, meaning it will evaluate to a non-⊥ value
at step t.

Therefore, ϕ evaluated at monitor step t is not equal to ⊥.


	Introduction
	Main Findings of Systematic Survey
	Architecture Findings
	Implementation
	Verification

	Monitoring for Trustworthiness Checkers in the MAPLE-K loop
	Tutorial on Runtime Verification for Self-Adaptive Systems
	Dynamic runtime monitoring
	Distributed monitoring
	Planned Case Study

	Preliminary Integration of Trustworthiness Checkers
	Robotic laptop refurbishment case from DTI
	The Robot Navigation Case from PAL Robotics
	Ship Motion Prediction Case from NTNU
	Dynamic Risk Model Case Study from Fraunhofer IFF

	Conclusion
	Appendix
	State of the Art of the MAPE-K Loop: Architecture, Implementation and Verification
	Runtime Verification of Autonomous Systems utilizing Digital Twins as a Service
	DynSRV: Dynamically Updated Properties for Stream Runtime Verification


